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ABSTRACT

Formal security analysis has proven to be a useful tool for
tracking modifications in communication protocols in an au-
tomated manner, where full security analysis of revisions
requires minimum efforts. In this paper, we formally anal-
ysed prominent IoT protocols and uncovered many critical
challenges in practical IoT settings. We address these chal-
lenges by using formal symbolic modelling of such protocols
under various adversaries and security goals. Furthermore,
this paper extends formal analysis to cryptographic Denial-of-
Service (DoS) attacks and demonstrates that a vast majority
of IoT protocols are vulnerable to such resource exhaustion
attacks. We present a cryptographic DoS attack countermea-
sure that can be generally used in many IoT protocols. Our
study of prominent IoT protocols such as CoAP and MQTT
shows the benefits of our approach.
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1 INTRODUCTION

In recent years, a number of Internet of Things (IoT) frame-
works and associated security protocols and mechanisms have
been proposed to realize the vision of the next-generation
ubiquitous Internet. However, security guarantees become
even more challenging in the IoT environment due to fre-
quent model/code changes, application-specific adversaries,
and emerging threats. The security of IoT systems remains
one of the top barriers blocking the success of IoT prolifera-
tion [10], as many attacks and vulnerabilities have started
to target relatively weak IoT applications and devices. As
an example of a particularly interersting case, IoT devices
constituted 38% of the victims of a cryptocurrency mining
worm [5].
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The security analysis of IoT protocols remains an open
challenge. The main reason for this is that the majority of
IoT protocols are prone to frequent change; as the vendors
and service providers modify them to respond to market de-
mands or application model changes. Any changes in setting,
security model or code require exhaustive security analysis.
Another reason is that the security properties of applications
vary depending on deployment environment, types of de-
vices, network bandwidth, and energy availability [34]. This
results in the need for analysis of the same protocol un-
der various adversary models and goals. For instance, some
applications consider only the traditional Dolev-Yao (D-Y)
attacker (insecure wireless channel), while others must con-
sider a significantly stronger adversary such as the extended
Canetti-Krawczyk (eCK) model [36], where the adversary
may dynamically compromise a limited number of long-term
and session keys with the possibility of corrupting random
number generators. This is often due to the unguarded deploy-
ment environment of IoT applications. Some applications may
also require Perfect Forward Secrecy (PFS), which protects
past sessions against future compromises of secret keys [33].
Thus, a full security analysis of ever-changing IoT protocols
under application-specific settings is a difficult task.

Pen and paper analysis. One well-established prac-
tice for security analysis is ‘pen and paper’ cryptographic
analysis. Despite its clear value, it is error-prone and time-
consuming [26], especially for protocol drafts where the se-
curity model and implementation details can still change.
Even some parameter changes in source code can trigger a
substantial full security analysis.

Automated formal symbolic security analysis. Tool-
based formal security analysis has helped with ‘automated’
analysis of abstract security protocols. In the past decade [21,
35, 39], a large number of formal security analysis tools have
become publicly available. One highly interesting case, where
such tools have proven to be immensely useful, is the analysis
of TLS 1.3 revisions. Given the complicated variants and the
use case of TLS 1.2, many flaws such as BEAST [27] and
Lucky-Thirteen [20] had been identified before TLS 1.3. Thus,
the TLS working group decided to adopt an ‘analysis-before-
deployment’ paradigm when drafting TLS 1.3. Yet the full
security analysis of the entire TLS 1.3 draft was not expected
to finish in time due to the substantial complexity of the
protocol suite, with multiple ‘pen and paper’ or tool-based
approaches. Cremers et al. [26] performed extensive symbolic
security analysis on TLS 1.3 draft-10 to confirm that it is
robust, except for a design flaw in a delayed client authenti-
cation mechanism when combined with a PSK-resumption
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handshake. The authors claim that their approach can anal-
yse future TLS 1.3 drafts with a minimum time effort, and
they keep track of current drafts.

Challenges. Based on our experience, we found that for-
mal security analysis is extremely useful for standard-based
IoT protocols. For instance, standard security primitives
such as Public Key Cryptography (PKC) and Pre-Shared
Key (PSK) based protocols can be analysed and tracked
with minimum effort. However, we discovered several critical
limitations while introducing new algorithms.

DoS attack vulnerability. The 2016 DYN cyberat-
tack [12] and 2013 Spamhaus attack [3] have demonstrated
that Denial-of-Service (DoS) attacks can cause massive disrup-
tion, especially in IoT deployments. IoT systems are particu-
larly vulnerable to DoS attacks due to the involved Machine-
to-Machine (M2M) communication. Although the latter en-
ables intelligent applications, its fault-tolerance behaviour
and lack of human monitoring brings new vulnerabilities.
In addition, when IoT applications run on battery-powered
devices, bandwidth and energy are at a premium to maximize
the lifetime of such devices.

Contributions. We make the following contributions:

• We perform symbolic security analysis of prominent
IoT protocols under various adversary models and
goals such as D-Y, eCK, and PFS. We present our
analysis and make the code public so that it can be
used adaptively upon modification of these proto-
cols1.

• We present critical challenges in existing symbolic
security analysis tools and propose solutions.

• We further demonstrate how DoS attacks can be
modelled and protocols correspondingly verified; we
show that important IoT protocols are vulnerable to
DoS attacks.

• We discuss the limitations of existing DoS counter-
measures in IoT and propose a tailored DoS attack
countermeasure that can be generally used in other
IoT protocols.

This paper is organized as follows. Section 2 presents
background of prominent IoT protocols and existing DoS
countermeasures. Section 3 introduces the Tamarin prover
by modelling standard-based protocols. Section 4 presents
restrictions of existing symbolic tools and proposes solutions
to address the restrictions. Section 5 presents the innate DoS
attack vulnerability of IoT protocols. To address DoS attack
vulnerability, we propose our countermeasure in Section 6.
Section 7 concludes the paper.

2 RELATED WORK

In this section, we present prominent IoT protocols and their
security goals, which we will refer to throughout the paper.
We present a summary in Table 1. We also show the existing
DoS countermeasures and their shortcomings when they are
used in the IoT.

1Our implementation is available at https://github.com/jun-kim/
Automated-security-verification-of-IoT-protocols

Protocol Attacker/Goal Note
Sigfox [14] D-Y/Standard All packets carry signature
LoRa [13] D-Y/Secrecy, Integrity PSK is recommended
MQTT [15] D-Y, eCK/Standard Recommend session resumption
CoAP[4] D-Y, eCK/Standard Rely on DTLS
JPAKE [6] D-Y, eCK/PFS Eliminate PKC suite

Table 1: Overview of IoT protocols analyzed in this
paper.

2.1 LPWAN Protocols

Low Power Wide Area Network (LPWAN) can provide cover-
age up to several kilometres using low-power applications [13].
Many LPWAN IoT device management applications such as
water/gas meters, street lights, vending machines, devices
for pets, trash containers, and smoke alarms are potential
users of this technology. The LPWAN radio layer uses the
unlicensed spectrum below 1 GHz, which is free for use for
all applications.

SigFox. SigFox [14] is designed for enterprise use cases
with tight management schemes. Since it targets standard
security, SigFox mandates a PKC cipher suite with X.509
certificates even on extremely constrained devices. A distin-
guishable difference between SigFox and standard PKC is
that all SigFox communication packets carry the sender’s
signature to enhance integrity in low-bandwidth environ-
ments. Furthermore, all SigFox devices are equipped with
manufacturer-generated public and private key pair before
deployment and this is used as their identity during their
lifetime. Although this design choice enables standard se-
curity with tight device management features, performance
and battery life of constrained devices are extremely limited.
Therefore, SigFox is a favourable choice for enterprise IoT
applications where devices have no energy constraints.

LoRa alliance. Designed for long battery life, the Long
Range alliance (LoRa) [13] specification essentially uses Pre-
Shared Key (PSK) cipher suites with HMAC support only. It
leaves the choice of cipher suites to application designers and
developers. Compared to SigFox, the LoRa security model is
more suitable for constrained IoT applications with long-term
usage. However, PSK is only secure against a D-Y adversary;
one compromised device can jeopardize the entire application
security.

2.2 Publish/Subscribe Protocols

A number of publish/subscribe messaging protocols are cur-
rently in use in commercial IoT applications. The Constrained
Application Protocol (CoAP) [4] and MQ Telemetry Trans-
port (MQTT) [15] are two prominent examples. They are ex-
tremely simple with RESTful interfaces and lightweight pub-
lish/subscribe messaging protocols, designed for constrained
devices and low-bandwidth, high-latency or unreliable net-
works. Their design principles strive to make them ideal for
emerging IoT applications, where bandwidth and battery
power are at a premium. When the server (broker) receives
a published item, it securely distributes the item to all sub-
scribers resulting in tight security and privacy provided by
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the centralized server. Our case study will model and analyze
CoAP and MQTT.

2.3 JPAKE Algorithm

Password-Authenticated Key Exchange (PAKE) schemes al-
low to establish secure communication between two remote
parties based solely on their shared low-entropy password.
The PAKE paradigm is suitable for IoT applications; it fea-
tures straightforward structure, efficiency, and has no PKC
infrastructure requirements. As a factory default, IoT de-
vices are only required to be equipped with a low-entropy
password that can be used for further secure communica-
tion and authentication without relying on complex PKC
infrastructure.

Although patent issues have blocked PAKE adop-
tion2, Password-Authenticated Key Exchange with juggling
(JPAKE) [29] has been proposed patent-free. The ‘juggling’
(hence ‘J’PAKE) technique and Schnorr signature [43] for
Zero-Knowledge-Proofs (ZKP) enable this design. JPAKE
is included in many IoT protocols such as Google Nest’s
THREAD IoT commissioning protocol3 [7]. It is currently
being standardized by the IETF [6].

2.4 Summary of IoT Protocols

To elaborate on the IoT protocols summarized in Table 1,
MQTT, CoAP and SigFox are used as typical examples of
standard TLS 1.2 with simple variations depending on the
protocol design philosophy. SigFox uses signatures for every
packet and MQTT uses a session resumption approach. CoAP,
on the other hand, adopts Datagram TLS (DTLS) for low-
power networks. Throughout this paper, we will use SigFox
as a standard TLS 1.2 example and model MQTT and CoAP
in terms of their variations. LoRa will serve as a typical
PSK example. Finally, JPAKE will serve as our example
to introduce the challenges in formal security analysis of
practical IoT protocols.

2.5 DoS Attack Countermeasures

We summarize existing DoS countermeasures for IoT and
their shortcomings as follows.

One-way hash. One-way hash [44] have been used in
wireless sensor networks (WSNs) as a DoS attack defensive
measure. Devices are equipped with a non-invertible hash
function (one-way) before deployment and use it for light-
weight verification before performing heavy crypto operations.
However, this mechanism raises concerns in the IoT domain
since equipping a unique function per application from the fac-
tory is hard. Critically, a successful node compromise attack
can reveal the one-way function, resulting in neutralization
of the defence.

Cookie: IKEv2 [1] and DTLS [8] adopt the cookie ap-
proach as a DoS attack defensive measure. In DTLS, upon

2Many PAKEs are patented (e.g., EKE [24] by Lucent technologies
and SPEKE [30] by Phoenix technologies).
3The THREAD consortium is organized by Google Nest and other
major IT companies such as ARM and Samsung. THREAD released
its implementation as open source in May, 2016.

arrival of a client hello message, the server issues a cookie ver-
ification message to confirm that the hello is from the specific
client. The cookie verification message contains a stateless
cookie so the server does not need to keep any record. De-
spite its effective defence against spoofed IP addresses, this
mechanism provides no defence against DoS attacks mounted
from valid IP addresses.

Time lock puzzle. Rivest, Shamir, and Wagner
(RSW) [40] proposed a time-lock puzzle based on RSA. In

the RSW construction, solving a secret value b = a2
l

mod n
is required, where a, b are random values in a group G. The
parameter l governs the hardness of the puzzle; a solver must
perform l modular squaring operations in order to compute
b. RSW constructs a kind of digital time capsule which the
solver must consume a certain amount of time as intended
by the issuer. Even though the RSW approach is a good
countermeasure, the issuer must perform one square expo-
nentiation and one multiplication to create the puzzle; these
computationally intensive operations can drain the battery
on constrained devices.

Client Puzzle. Client puzzles as i [31] are proposed as a
cryptographic countermeasure against connection depletion
attacks such as TCP SYN flooding. A client puzzle is a
quickly computable cryptographic problem making use of a
server secret, the time, and the client request. In order to
proceed to the next step of the protocol, the requester must
solve and submit the answer. The client puzzle approach has
multi-fold benefits against DoS attacks, as its generation is
lightweight and hardness control is possible. However, it has
a linear communication overhead for hardness control due to
its sub-puzzle construction algorithm.

We further elaborate on the DoS vulnerability of IoT with
our proposed DoS countermeasure in Section 6.

3 SYMBOLIC MODELLING OF
STANDARD-BASED PROTOCOLS

We investigated various state-of-the-art verification tools to
find the most suitable tool. We found that some tools are
limited in modelling complex IoT scenarios. The majority of
tools are based on bounded verification, where only a finite
subset of behaviours is considered. Unbounded verification
tools such as ProVerif [25] are proven efficient, but this does
not guarantee termination in the case of complex protocol
verifications. Several other tools are restricted to analysis
under the traditional D-Y adversary model [38, 39]. In terms
of expressivity, some tools are limited to Diffie-Hellman (DH)
inverses [25] or exponentiations [35, 37]. Based on our inves-
tigation, we believe the Tamarin prover [41] can model IoT
protocols without the aforementioned issues. The Tamarin
prover has already proven its value in complex protocol anal-
ysis and demonstrated that little effort is needed in tracking
design changes in the TLS 1.3 specification. Unlike exist-
ing tools, Tamarin guarantees the termination of analysis of
complex protocols; it also supports DH inverses and exponen-
tiations. Furthermore, various extensions for Tamarin exist,
such as bilinear pairing/AC-operator support [42] for group
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key schemes, human error modelling [23], and observational
equivalence modelling [22]. These features will be beneficial
for modelling practical IoT application use cases.

In this section, we model standard-based IoT protocols us-
ing the Tamarin prover. Manuals and source code for Tamarin
can be found on the official page [11].

3.1 Modelling SigFox (PKC)

SigFox essentially uses TLS 1.2 PKC and shares its security
goals. The main difference between SigFox and TLS 1.2 PKC
is that all packets carry the sender’s signature for integrity
under low bandwidth. Let us take a simple SigFox notification
example below to show how modelling works in Tamarin.
The SigFox server (Alice) pushes an asymmetric-encrypted
notification (na) with its signature to devices (Bob).

Facts. Tamarin defines a transition system of facts using
multiset-rewriting rules. Two types of facts represent proper-
ties and resources of the protocol; they can be consumed by
rules. Linear facts are used for limited resources so they are
consumed only a limited number of times. Persistent facts
are defined with an exclamation point; they can be consumed
an unlimited number of times by rules.

[Premises, Consume facts]--[Actions]->[Conclusions]

OR

[Premises, Consume facts]-->[Conclusions]

Figure 1: A Tamarin rule consists of 3 sides. The
middle (actions) is not always needed.

Rules. Each Tamarin rule has three ‘sides’: the left side
for premises and consuming facts, the middle for defining
actions, and the right side for conclusions (see Fig. 1).

In rule Register pk, the left side rule [Fr(∼ltk)] defines a
premise that ∼ltk is a new linear fact using a pre-defined
rule Fr() (line 1). The fact ltk uses ∼ to represent a fresh
value; it can be consumed in the conclusion rule [!Ltk($A,
∼ltk), !Pk($A, pk(∼ltk), Out(pk(∼ltk)]. The conclusion rule
uses two persistent facts. The !Ltk() fact allots a long-term
private key to a public ID A ($ means public resource). The
!Pk() fact allots a public key to a public ID A. The Out() fact
represents transmitting the public key (pk()) to the untrusted
network, resulting in the receiver’s and adversary’s knowledge
(line 2). Facts transmitted using Out() can be received by
the In() fact; this mechanism represents the traditional D-Y
adversary model.

We define the rule Push notification to show the server’s
role for transmitting encrypted notification to devices. Pub-
lic ID A uses the public key of B (pkB) and generates a
fresh data item ∼na. It then encrypts the data and A’s ID
using the pre-defined primitive fact aenc() with pkB to gen-
erate the message (msg, line 1). Using another fact sign(),
A signs the message using its own private key (ltkA, line
2), which is retrieved by a persistent fact !Ltk(A,ltkA) (line
3). To make multiple occurring terms simple, let-in bind-
ing is supported in Tamarin and concatenation of facts is

rule Register pk:
1.[ Fr(~ltkA) ] -->
2.[ !Ltk($A,~ltkA), !Pk($A,pk(~ltkA)), Out(pk(~ltkA))]

rule Push notification:
1.let msg = aenc(<A, na>, pkB)
2. sig = sign(msg,ltkA) in
3.[Fr(~na), !Ltk(A, ltkA), !Pk(B, pkB)]--
4.[Send(A, msg), Secret( na), Role(’A’), Honest(B)]->
[Out(<msg, sig>)]

rule Receive:
1.let msg = aenc(<A, na>, pkB) in
2.[!Ltk(B,ltkB),!Pk(A, pkA), In(<msg, sig>)]--
3.[Eq(verify(sig,msg,pkA),true),Recv(B, msg),Secret(na),
Honest(B), Honest(A), Role(‘B’)]->
4.[St B 1(B, ltkB, pkA, A, na)]

rule Reveal ltk:
1.[!Ltk(A, ltkA) ]–[Reveal(A)]-> [ Out(ltkA)]

Figure 2: SigFox implementation using Tamarin.
This is a typical PKC scenario.

represented as <A, ∼na> (line 1-2). Unlike the rule Regis-
ter pk, Push notification has a middle side [Send(A, msg),
Secret(∼na), Role(’A’), Honest(B)] (line 4). These action
facts represent a transition of states that can be used in the
security proof stage.

We model a device’s role in rule Receive. B receives the
asymmetrically encrypted message with a signature using
the In(<msg, sig>) fact (line 2). Tamarin supports <x,y> as
syntactic sugar for concatenation of x and y and <x1,x2,...,xn-
1,xn> as syntactic sugar for <x1,<x2,..,<xn-1,xn>...>.

B first performs signature verification using the verify()
fact and asymmetric decryption using the fact adec() and B’s
private key (ltkB, line 3). Tamarin provides various axioms
such as Eq() for equality, Neq() for inequality, and Unique()
for unique actions. Eq(verify(sig,msg,pkA),true) means the
rule Receive will proceed provided the signature verification
equals true (see Fig. 3). The St B 1() fact is a state fact to
store current state that will be used in later rules (line 4).

To generate a stronger adversary model eCK and PFS,
we add a rule Reveal ltk, where adversaries can have access
to long-term private keys. The action fact Reveal(A) will
be used to generate contradictions for security properties.
This will be used to introduce stronger security goals and
adversaries such as eCK and PFS.

Cryptographic primitives. Tamarin provides various
pre-defined cryptographic primitives under a perfect cryptog-
raphy model, which means all cryptographic primitives used
in Tamarin are perfect. For example, symmetric cryptography
never reveals plain text, hashing acts as a random oracle,
MACs and signatures are unforgeable. Some examples of the
supported primitives are described in Fig. 3.

Security properties. Tamarin defines lemmas for prop-
erties using its first-order logic expressions. For instance, &
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Tamarin Cryptographic Primitives

Diffie-hellman:xˆyˆz = xˆ(y*z), x*inv(x) = 1
Symmetric cryptography: sdec(senc(m,k),k) = m
Asymmetric cryptography: adec(aenc(m,pk(sk)),sk)=m
Digital signature: verify(sign(m,sk),m,pk(sk)) = true
Bilinear-pairing: em(pmult(x,p),q) = pmult(x,em(q,p))
axiom Equality: ”All x y #i. Eq(x,y) @i ==> x = y”

Figure 3: Tamarin prover provides various built-in
primitives under perfect cryptography model.

is for and, | for or; the Ex and All quantifiers mean the usual
first-order expressions. Tamarin supports the indicators @
for a point in time and # for a specific variable. Tamarin’s
property specification language is a guarded fragment of a
many-sorted first-order logic with a sort for points in time.
This logic supports quantification over both messages and
time [11].

Our SigFox lemma definitions are described in Fig. 4.

lemma executable: exists-trace
”Ex A B m #i #j. Send(A,m)@i & Recv(B,m)@j”
lemma secret A: all-traces
”All n #i. Secret(n) @i & Role(’A’) @i ==> (not (Ex #j.
K(n)@j)) |(Ex B #j. Reveal(B)@j & Honest(B)@i)”
lemma secret B: all-traces
”All n #i. Secret(n) @i & Role(‘B’) @i ==> (not (Ex #j.
K(n)@j)) |(Ex B #j. Reveal(B)@j & Honest(B)@i)”
lemma secrecy PFS A:
”not All x #i. Secret(x) @i & Role(’A’) @i ==> not (Ex #j.
K(x)@j)|(Ex B #r. Reveal(B)@r & Honest(B) @i & r < i)”

Figure 4: Security properties are defined as lemmas.

To ensure that other lemmas do not just hold vacuously
because the model is not executable, we first define a sanity
check lemma that shows that the model can run to completion.
This is given as a regular lemma, but with the exists-trace
keyword, as seen in the lemma ‘executable’. This keyword
says that the lemma is true if there exists a trace on which
the formula holds. The executable lemma states that at
times @i and @j, there exists A/B and message m. To verify
secrecy claims, we use the Secret(x) action fact to indicate
that the message x is supposed to be secret. In our model,
both agents may claim secrecy of a message na, but only
A’s claim is true. To distinguish between the two claims, we
added the action facts Role(‘A’) and Role(‘B’) in the rules
Push notification and Receive. We call an agent whose keys
are not compromised an honest agent and label it Honest(A)
and Honest (B).

Lemma secret A states that whenever a secret action Se-
cret(n) occurs at time i of Role(‘A’), the adversary does not
know x or an agent claimed to be honest at time i has been
compromised at a time r. The security claim of B is defined
in lemma secret B, but only A’s claim holds.

We further model the stronger secrecy property PFS, which
requires that messages labeled with a secret() action before
a compromise remain secret. Although SigFox does not con-
sider this security goal, some applications with possible key
disclosure can use this lemma. If the perfect forward secrecy
property is negated, PFS does not hold.

The security analysis for SiFox is given in Fig. 5; Tamarin
also provides a graphical UI for convenience.

analyzed: sigfox PKC.spthy
executable (exists-trace): verified (8 steps)
secret A (all-traces): verified (11 steps)
secret B (all-traces): falsified - found trace (10 steps)
secrecy PFS A (all-traces): falsified - found trace (3 steps)

Figure 5: The result of the SigFox push notification
protocol. It can be viewed in a GUI.

3.2 Modelling LoRa (PSK)

We model LoRa PSK scenarios, where A and B exchange
their own secret secA and secB, respectively, using symmetric
encryption with a HMAC for integrity. We then verify the
security under D-Y and eCK adversary models.

First, PSK distribution and revealing are defined in rules
Key distribution and Reveal psk. In rule A Send, Alice re-
trieves her shared key (KeyA) using the !PSK() fact (line
2). She transfers the message with HMAC to the network
(line 4). In rule Role B, Bob receives the message using the
In() fact, then retrieves his shared key (keyB, line 3). Bob
performs HMAC verification using his own key using the Eq()
axiom (line 4). After generating his own secret (secB), he
encrypts and sends a message along with a HMAC (line 5).
Bob inserted a unique identifier ‘B 1’ in line 2 to distinguish
his message from Alice’s message. In rule A Receive, Alice re-
ceives Bob’s message using the In() fact (line 2), then verifies
the HMAC using the Eq() axiom.

We first verify the correctness of the protocol flow with
lemma protocol flow. It verifies that Alice performs Send A
at time @i and Bob receives and sends back at time @j.
Alice receives Bob’s secret at time @k. To verify the secrecy
of two secret messages secA and secB, we use the action
fact Secret(). Lemma message secret DY confirms that the
two secrets are secure when no-one reveals the PSK. When
there is a possibility of key disclosure, the message secrecy is
verified as insecure under the eCK model, which is defined
in lemma message secret eCK.

4 RESTRICTIONS OF SYMBOLIC
SECURITY ANALYSIS

Although symbolic analysis can model and track standard-
based protocols efficiently, introducing new algorithms is a
challenging task. We present our findings in modelling new
algorithms such as JPAKE. Analysing new algorithms such
as JPAKE is necessary since it has been included in many IoT
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rule Register pk:
1.[ Fr(~ltkA) ] -->
2.[ !Ltk($A,~ltkA), !Pk($A,pk(~ltkA)), Out(pk(~ltkA))]

rule Key distribution:
1.[ Fr(~key)]-->[ !PSK($A, ~key)]

rule Reveal psk:
1.[!PSK(A,key)]--[Reveal(A)]->[Out(key)]

rule A Send:
1.let msgA = <A,senc(~secA, keyA)> in
2.[ !PSK(A, keyA), Fr(~secA)]
3.--[Send A(A,msgA)]->
4.[Out(<msgA, hmac(msgA,keyA)>)]

rule Role B:
1.let msgA = <A,senc(secA, keyA)>
2. msgB = <B,‘B 1’,senc(~secB,keyB)> in
3.[!PSK(B,keyB),In(<msgA,
hmac(msgA,keyA)>),Fr(~secB)]
4.--[ Recv B(B, msgA), Secret(secA), Send B(B, msgB),
Eq(hmac(msgA,keyA), hmac(msgA,keyB))]->
5.[Out(<msgB,hmac(msgB,keyB)>)]

rule A Receive:
1.let msgB = <B,‘B 1’,senc(secB,keyB)> in
2.[ In(<msgB,hmac(msgB,keyB)>), !PSK(A, keyA)]
3.--[Recv A(A,msgB), Secret(secB), Eq(hmac(msgB,keyB),
hmac(msgB,keyA))]->[]

lemma protocol flow: exists-trace
”Ex A B SA SB #i #j #k. Send A(A,SA)@i &
Recv B(B,SA) @j & Send B(B,SB)@j & Recv A(A,SB)@k
& i < j & j < k”
lemma message secret DY: all-traces
”All s #i. Secret(s) @i & not (Ex A #i. Reveal(A)@i) ==>

not (Ex #j. K(s)@j)”
lemma message secret eCK: all-traces
”All s #i. Secret(s) @i ==> not (Ex #j. K(s)@j)”

Figure 6: Tamarin implementation of LoRa alliance
PSK with security properties.

protocols such as Google Nest’s THREAD commissioning pro-
tocol. The (D)TLS handshake is currently under development
for use in the IoT [2, 7, 8], too.

We briefly explain the JPAKE protocol. Two parties Alice
and Bob first agree on g ∈ G ∈ Zp. They share a low-entropy
password s ∈ [1, q − 1]. Alice generates two ephemeral values
x1, x2 ∈ Zq, then transfers gx1 , gx3 with a ZKP for x1, x2.
Similarly, Bob generates two ephemeral values x3, x4 ∈ Zq,
then transfers gx3 , gx4 with a ZKP for x3, x4. After verify-
ing the ZKP, Alice transfers α = g(x1+x3+x4)·x2·s with ZKP
for x2 · s. Similarly, Bob transfers β = g(x1+x2+x3)·x4·s with
a ZKP for x4 · s. After verifying the ZKP, Alice computes
KA = (β/gx2·x4·s)x2 = g(x1+x3)·x2·x4·s. Similarly Bob com-

putes KB = (α/gx2·x4·s)x4 = g(x1+x3)·x2·x4·s. They establish
the same key using a hash function h, as h(KA) = h(KB).

Protocol Security Result

JPAKE D-Y proof
JPAKE eCK proof
JPAKE PFS proof
CoAP-PSK D-Y proof
CoAP-PSK eCK attack on message secrecy
CoAP-PKC eCK proof
CoAP-PKC PFS attack on key establishment
MQTT D-Y proof
MQTT eCK proof
Sigfox D-Y proof
Sigfox PFS attack on key establishment
LoRa D-Y proof
LoRa eCK attack on message secrecy

Table 2: Overview of our case studies. For all proto-
cols, authentication, key establishment, and message
secrecy are proven secure under the D-Y model.

When modelling protocols using JPAKE, one encounters
a critical problem.

4.1 Unification Problem

Symbolic security analysis of JPAKE is not a trivial task for
existing formal security tools since they cannot support the
multiplication and addition of DH groups [28]. This is known
as the unification problem, where multiplication and addition
of DH group cause an NP-complete decidability problem.

Let us consider how unification works in symbolic analysis
tools. To prove the claim that the adversary never learns
the term x, symbolic analysis tools assume the adversary did
learn the term and then attempt to find a contradiction. This
is done by searching backwards from the adversary learning
the term and seeing what rules from the protocol (or the
adversary) rule set could have been applied to get there. The
primary question we want to investigate is whether two terms
can be unified, and if so, what substitutions will unify them.
If we want to unify xy = 2z where x,y,z are variables and
we are operating in Zp, the cyclic group of order p, then
it is proven that there are at most finitely many unifiers
(substitutions that make the two terms identical) such as
(x = 2, y = z), (x = 1, y = 2z), (z = 2−1, x = y−1). However,

the equality (gagb)c = (ga)c(gb)c or gagb = g(a+b) cannot
be unified [41]. There are infinitely many unifiers for DH
groups and finding such unifiers reduces down to the problem
of solving Diophantine Equations, which is known to be
undecidable [32]. This is a general open problem and research
topic in all symbolic verification tools based on unification.

To model the JPAKE protocol correctly, it requires mul-
tiplication and addition of DH groups such as gx1gx3 =
g(x1+x3), as Alice generates her key as g(x1+x3)·x4·x2·s. Since
the unification problem is NP-complete, there is no known
efficient algorithm to support the required features. This
means some parts of JPAKE such as g(x1+x3) and Schnorr
ZKP cannot be included in the model since they require
multiplication or addition of DH groups. Although using the
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symbolic analysis approach for emerging IoT protocols is use-
ful, introducing new algorithms with multiplication/addition
of DH group such as JPAKE is not possible.

To model JPAKE and protocol suites that use it, we pro-
pose two approaches. Note that our approaches are not a
theoretical contribution to this open research problem, but
rather a practical approach to imitate the required function-
ality.

rule Password distribution:
1.[ Fr( pass)]-->
2.[ !Alice($A,~pass), !Bob($B,~pass)]

rule RoleA 1:
1.let Y1 = ‘g’ ˆ~x1
2. Y2 = ‘g’ ˆ~x2 in
3.[ !Alice(A,pass), Fr(~x1), Fr(~x2)]-->
4.[Out(< A,‘A 1’, Y1, Y2>), ST1 A(A,pass,~x2)]

rule RoleB 1:
1.let Y3 = ‘g’ ˆ~x3
2. Y4 = ‘g’ ˆ~x4
3. KB = h(<Y1 ˆ~x3, Y2 ˆ~x4 ˆpass>) in
4.[!Bob(B,pass), Fr(~x3),Fr(~x4),In(<A, ‘A 1’, Y1, Y2>)]
5. --[Sym Key B(B,KB)]->
6.[Out(<B,‘B 1’,Y3, Y4>)]

rule RoleA 2:
1.let KA=h(<Y3 ˆx1 ,Y4 ˆx2 ˆpass>) in
2.[ In(<B, ‘B 1’, Y3, Y4>), ST1 A(A,pass,x2)]
3.--[Sym Key A(A,KA)]-> []

lemma key establishment: exists-trace
”Ex A B key #i #j. Sym Key B(B, key) @i &
Sym Key A(A,key) @j & i < j”

Figure 7: Approximation of the JPAKE protocol for
use as a building block in a larger protocol suite.

Approximation. One solution is to model JPAKE as
closely as possible to its original algorithm. This may not
capture some properties in the design, but important secu-
rity properties remain as intended. As explained, we cannot
exactly model g(x1+x3) due to the unification problem. As Ab-
dalla et al. analysed [19], the juggling technique in g(x1+x3) is
employed to eliminate some randomization factors for on/off-
line dictionary resistance, where adversaries can verify the
password only once per session. Since symbolic security anal-
ysis cannot verify on/off-line dictionary resistance, juggling

technique over g(x1+x3) is impossible to model anyway. Thus,
our approximation uses all parameters, but uses concatena-
tion (‖) instead of exponentiation over the parameters. In our
approximation, Alice generates her key as (gx1·x3 ‖ gx4·x2·s)
and Bob generates (gx3·x1 ‖ gx2·x4·s). Although this approxi-
mation does not capture all features of JPAKE, our required
security properties are modelled, as the key establishment
secrecy comes from the discrete logarithm problem and Deci-
sion Square Diffie-Hellman (DSDH) assumption over gx1·x3

rule Register JPAKE:
1.[Fr(~pass),Fr(~nr)]-->
2.[!Alice($A,~pass,~nr ˆ~pass),!Bob($B,~pass, ~nr ˆ~pass)]

rule Reveal password:
1.[!Alice(A,key,pass)]--[Reveal(A)]->[Out(pass)]

rule Role A:
1.[ Fr(~secA), !Alice(A, pass, keyA)]--
2.[Send(A,~secA), Key A(A,keyA), Secret(~secA)]->
3.[Out(<senc(~secA,keyA)>), !JPAKE(A,keyA)]

rule Role B:
1.let secB = sdec(msg,keyB) in
2.[In(<A,msg>), !Bob(B, pass, keyB)]--
3.[Key B(B,keyB), Recv(B,secB), Secret(secB)]->
4.[ST B(B,pass,keyB), !JPAKE(B, keyB)]

Figure 8: JPAKE as built-in primitive.

and gx2·x4. It is of no consequence if these internal param-
eters are used in other protocol blocks, either. We define
lemma key establishment to verify that there is a session key
establishment between Alice and Bob. Our approximation
model is presented in Fig. 7 and can be used in the analysis
of protocol suites.

Built-in primitive. A simple, straightforward, yet pow-
erful approach is to provide JPAKE as a built-in primitive
under perfect cryptography similar to PKC, signature, hash,
and symmetric encryption. Abdalla et al. [19] thoroughly
proved the security of JPAKE under a rigorous key estab-
lishment model. Providing JPAKE as a built-in primitive
similar to PKC cannot be the ultimate solution when other
blocks reuse some JPAKE parameters. However, this ap-
proach can simplify the model. Similar to other primitives,
JPAKE can be as simple as invoking predefined persistent
facts (!JPAKE()), the same with other predefined primitives
such as !PSK(), !Ltk(), and !Pk(). We implemented a JPAKE
built-in primitive as Fig. 8 so it can be readily used.

We believe our two approaches can be effective in modelling
complex algorithms in practical settings.

4.2 Case Study

We present our case studies by formally analysing MQTT and
CoAP. Although CoAP and MQTT share similar design prin-
ciples for constrained IoT applications, their approaches to
security and implementations are quite different. In terms of
lightweight protocol design, CoAP’s security depends purely
on Datagram TLS (DTLS) [8].

MQTT. MQTT recommends the use of the latest TLS
architecture with X.509 certificates. To minimize the overhead
of the TLS handshake, MQTT recommends the use of TLS
session resumption via either the session ID or session ticket
methods. We model the TLS 1.2 session resumption protocol
from MQTT’s official open source release. This will be a
valuable basis since there are many MQTT variations and
modes such as MQTT for Sensor Networks (MQTT-SN) [16].

244



Tamarin verified that MQTT’s TLS 1.2 session resumption
implementation is solid, where the PSK/PKC resumption has
no attacks. For some applications that require PFS, we also
implemented a lemma that can verify PFS in the resumption
process.

CoAP The fundamental design philosophy of DTLS is
to ‘reconstruct’ TLS over datagram packets as closely as
possible, minimizing new security inventions and maximizing
the amount of TLS infrastructure reuse. DTLS addresses two
problems that normal TLS would have due to the unreliability
of datagram transport. First, in normal TLS with stream
ciphers, records depend on each other, and hence decryption
of individual records is not possible. Second, TLS uses implicit
sequence numbers to protect against replays and reordering.
DTLS solves this by avoiding stream ciphers completely
and by using explicit sequence numbers. It also employs a
stateless cookie technique to protect against DoS attacks.
As cryptography is perfect in the modeller, modelling DTLS
thus has to take only two aspects into account, compared to
TLS 1.2: 1) a MAC in each record with an explicit sequence
number, and 2) the stateless cookieour . Our DTLS model
can serve as a base to model other IoT protocols that are
based on this protocol. We also implemented key security
verification under D-Y, eCK, and PFS.

Table 2 shows our case studies including SigFox, LoRa,
JPAKE, MQTT, and CoAP. Based on our initial implemen-
tation, service providers and vendors can further extend the
analysis according to their application settings. We plan
to continue formal analysis of other IoT protocols and will
release our implementations.

5 DOS ATTACK VULNERABILITY OF
IOT PROTOCOLS

IoT applications face emerging adversaries working for dif-
ferent motives. Thus, introducing new attack models in the
formal analysis is essential for practical IoT applications. In
this section, we used DoS attacks as an example of introduc-
ing emerging attack models in the IoT. Vulnerability to DoS
attacks is a classic problem. We present our DoS attack mod-
elling using our approach to formal security analysis. This
will be a base for introducing application-specific adversary
models.

We usually assume the adversary’s goals to be to disrupt,
subvert, or destroy a network, resulting in diminished or
eliminated capability. A DoS attack does not require as much
effort as other cryptographic attacks, but it works very well
in the IoT [45]. DoS attacks can occur on the physical layer
all the way to routing and application layer. However, we
only consider cryptographic DoS attacks in IoT applications
here. Cryptographic DoS attacks are extremely effective in
terms of depleting/exhausting constrained resources such as
computation, communication, and energy of battery-powered
devices [47]. The crucial advantage cryptographic DoS attacks
enjoy is that they cause intensive computation.

DoS attacks targeting IoT devices. To show the im-
pact of cryptographic DoS attacks, we performed extensive

Operation Time Energy

Multiplication 269 ms, 24.3 mA 13.7 mJ

Exponentiation 695 ms, 24.3 mA 35.4 mA

Pairing 1,964 ms, 25.1 mA 103.5 mJ

ECDSA generation 4,104 ms, 23.6 mA 203.3 mJ

ECDSA verification 2,631 ms, 23.6 mA 130.3 mJ

AES-256 (200 byte) 1.8 ms, 20.8 mA 78.6 µJ

SHA-256 (200 byte) 3.1 ms, 20.8 mA 135.4 µJ

Radio (127 byte) 1,301 ms, 24.8 mA 67.7 mJ

Table 3: Computation overhead summary on Open-
mote using NIST P-256 elliptic curve. RSA will
cause significantly higher overheads.

experiments on a constrained IoT device, Openmote [9]. Open-
mote represents our battery-running constrained IoT device,
as it features Cortex-M3 processors with up to 32 Mhz clock,
256/512 kB ROM, 16/32 kB RAM, and tamper-resistant key
storage. Even lightweight Elliptic Curve Digital Signature Al-
gorithm (ECDSA) signature verification/generation requires
2.6 and 4.1 seconds, respectively, on Openmote (see Table 3).

In such an environment, simply flooding the network with
fake signatures or session re-initialization requests can ac-
complish the goal of a DoS on IoT devices. DoS attacks on
IoT servers aim for amplification by transmitting handshake
(re)initialization and service requests.

DoS attacks on JPAKE. Although the security of
JPAKE was initially proved by Hao et al. [29] and later
thoroughly by Abdalla et al. [19], they both emphasized that
DoS attacks are a rare but a powerful attack on JPAKE.
This is due to the intrinsic nature of PAKE protocols, where
the password is the only secret between two parties and it
is a low-entropy secret. Thus, there is practically no way to
verify the legitimacy of a party until the key between the two
parties is established.

Since the original JPAKE implementation is too heavy
for constrained IoT devices, THREAD proposes to use an
elliptic curve variant of JPAKE (EC-JPAKE) [2], using the
NIST P-256 elliptic curve. EC-JPAKE is a more suitable
choice for IoT applications since Elliptic Curve Cryptography
(ECC) requires significantly shorter keys than RSA for the
same level of security (e.g., 256 bit ECC ≡ 3072 bit RSA),
resulting in lower performance and memory requirements for
constrained IoT devices. ECC-based security schemes have
been a favourable choice for IoT and WSNs applications, as
they can provide higher security even on constrained devices.

Although the original JPAKE consists of 4 flights in to-
tal, EC-JPAKE contracts it to 3 flights for communication
efficiency (see Fig. 9). Each EC-JPAKE party must per-
form 14 exponentiations and 8 multiplications to derive the
shared key with 3 protocol flights. We measured the com-
putation/communication cost of the EC-JPAKE handshake
on Openmote using the 802.15.4 radio. One EC-JPAKE
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Alice (Device) Bob (Server)

�1 ∈ �, �1 = g�1

�2 ∈ �, �2 = g�2 �1, �2 ZKP for (�1, �2)
Verify ZKP for (�1, �2)

Verify if �2  0

�3 ∈ �, �3 = g�3

�4 ∈ �, �4 = g�4

�5 = (�1�2�3)
�4⋅s�3, �4,	�5, ZKP for (�3, �4), ZKP for �4⋅s 

Flight 1

Flight 2

Verify ZKP for (�3, �4)

Verify if �4  0

�6 = (�1�3�4)
�2⋅s

Verify ZKP for �4⋅s 

K =
�4

�2⋅s(    )
�5 �2

KA                = g(�1 + �3)⋅�2⋅�4⋅s  

Session key = h(KA)

�6, ZKP for �2⋅s

Flight 3

Verify ZKP for �2⋅s 

K =
�2

�4⋅s(    )
�6 �4

KB = g(�1 + �3)⋅�2⋅�4⋅s  

Session key = h(KB)*ZKP : Zero-Knowledge Proof

*s : pre-shared password 

Figure 9: EC-JPAKE protocol overview.

Operation Computation Time Energy

Flight 1 4ex + 2m 3.3 s 169.3 mJ
Flight 2 8ex + 6m 7.1 s 366.0 mJ
Flight 3 2ex 1.3 s 70.9 mJ

Total computation 14 ex + 8 m 11.8 s 606.2 mJ
Including radio activities 20.5 s 1195.2 mJ

Table 4: Average EC-JPAKE overhead of Alice
on Openmote. Each EC-JPAKE session requires
20.5 seconds and consumes 1195.2 mJ (0.14 % of
a CR-2032 battery capacity).

handshake consumes 11.8 seconds for computation and 20.5
seconds with communication included. One handshake con-
sumes 1195.2 mJ , which is 0.14% of a new CR-2032 battery
capacity (see Table 4). Exploiting the fault-tolerant nature
of IoT devices, continuous false authentication requests can
deplete the device energy or can interfere with legitimate
operations.

Modelling DoS attacks. We now show how to model
such DoS attacks using the Tamarin prover. To the best of
our knowledge, this is the first modelling of DoS attacks in
the IoT using a formal security verification tool. We reuse the
SigFox PKC example here for its simplicity and because all
SigFox packets carry a signature. In rule Receive, we defined
a state fact ST B 1(B, ltkB, pkA, A,na) that can be used in
later steps. Let us assume Bob’s return message is crypto-
graphically heavy (an ECDSA signature generation itself is
indeed heavy on Openmote. 4.1 seconds). If an adversary can

rule Send back:
1.[St B 1(B,ltkB, pkA, A,na, pkB),Fr(~nb)]--
2.[B Send(B,aenc(<A, na>, pkB)),
DoS Protection(aenc(<A, na>, pkB))]
3.->[Out(sign(<B,~nb>,ltkB))]

lemma DoS protection:
”All m #i. DoS Protection(m) @i ==> (Ex A #j. Send(A,m)
@j & Honest(A)@j) | (Ex A #r. Reveal(A)@r & Hon-
est(A)@i& r<i)”

Figure 10: Our DoS attack verification implementa-
tion.

Protocol Result

JPAKE Attack on key establishment
JPAKE with our SP Proof
CoAP-PSK Proof
CoAP-PKC Attack on signature
MQTT Attack on signature
SigFox Attack on signature
LoRa Proof

Table 5: Overview of DoS attack verifications.

Approach Lightweight Hardness control Communication
One-way hash [44] O X O
Cookie [1] O X X
Time lock [40] X O O
Client puzzle [31] O O X

Our approach O O O

Table 6: Comparison of DoS attack countermeasures.

force this step an unlimited number of times, this is a DoS at-
tack vulnerability. We define lemma DoS protection to verify
whether there are B Send actions without a legitimate sender
with verified signature. This lemma will be falsified if any
contradictory case is found. The lemma DoS protection guar-
antees that there is no such exhaustion in the rule Send back.
However, if we extend this to the rule Receive, where sig-
nature verification is performed, this lemma will find DoS
attacks.

The same approach can be applied to the other aforemen-
tioned protocols. We summarize the result of DoS vulnera-
bilities in Table 5.

6 OUR DOS COUNTERMEASURE

In this section, we propose our countermeasure against DoS
attacks for EC-JPAKE. Although EC-JPAKE is used as an
example, the countermeasure can be used generally in other
protocols since it does not rely on any internal parameters
of EC-JPAKE and uses standard AES/HMAC.

The intrinsic DoS weakness of EC-JPAKE comes from
the juggling and ZKP to hide the low-entropy shared pass-
word. Neither party can verify the legitimacy of the other
party without key establishment. EC-JPAKE is resistant to
off-line dictionary attacks since g(x1+x3+x4) and (x2 · s) are
random elements in group G (under the decisional Diffie-
Hellman assumption). Adversaries cannot distinguish be-
tween (x1 + x2 + x3) or (x1 + x3 + x4) under the discrete
logarithm assumption. The main challenge arises here since
the protocol must not leak any information on the password
before the key verification. To rephrase, we cannot leverage
the shared password for DoS attack protection, otherwise we
will compromise the principle of the JPAKE design.

Challenge of existing countermeasures. As men-
tioned in Section 2, existing countermeasures pose drawbacks
in the IoT. The one-way hash function is lightweight, but
no longer secure in the event of a node compromise [44]; the
cookie approach is only secure against attacks from spoofed
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IP addresses [1]. Time-lock puzzles can adaptively control
the hardness according to the adversary capability, but heavy
puzzle generation can be a pitfall on constrained IoT de-
vices [40]. As observed in Table 3, radio activities consume as
much energy as cryptographic computations. Since computa-
tion and communication are at a premium in the majority of
IoT applications, causing excessive packets by client puzzles
can be a pitfall too. In particular, in low-power multi-hop net-
works such as 802.15.4 [17], where the MTU is 127B, packet
fragmentation can cause more issues. To avoid this, much
effort has been invested in outsourcing puzzle generation [46],
but it remains a challenge in practice. As shown in Table 6,
the majority of IoT protocols are vulnerable to DoS attacks.

6.1 Our Approach

One benefit of our DoS modelling is that it can detect ex-
actly which step of the protocol is vulnerable. Our proposed
countermeasure is lightweight for issuing and verifcation, and
the issuer (device) can set the exact hardness adaptively
according to the adversary capability. We propose to use an
AES-brute-force-based server puzzle (SP) that can dynami-
cally adjust the hardness in case of consecutive DoS attack
attempts and advanced adversaries. We further use the cookie
approach as an option to defend against DoS attack based
on IP spoofing. Our server puzzle is similar to the traditional
hash-inversion-based client puzzle, but we base it on AES
encryption.

Puzzle construction. Our construction is similar to
Propagating Cipher Block Chaining (PCBC), but we use
multiple keys to generate the next plain text. At a high level,
SP consists mainly of k-bits AES brute force problems, where
k-bits control the base hardness. Similar to a client puzzle’s
sub-puzzle structure, we use i-round block-chain-style sub-
puzzles for accurate hardness control. This is due to the
exponential hardness increment of the brute force problem.
For instance, an 35-bit AES-128 brute force problem required
an average 117 minutes to solve, while 36-bit required an
average of 940 minutes (measured on a moderately strong
laptop with Intel i-5, 4-core, 3.2 GHz clock, 4GB memory,
and no background processes, NIST Known Answer Test
(KAT) vectors [18]).

The first puzzle starts with i=0 and increases the number
of rounds or k bits upon consecutive requests or advanced
adversaries. The first plain text (P0) is generated by concate-
nating the request (R), the current time (T ), and a random
vector (RV ∈ {0, 1}∗) as padding. Here, we use the notation

(0→ λ) as superscript (e.g., K
(0→λ)
0 ) to show the length of

the element, which is (λ− 0)-bits long in this case.

K
(0→λ)
0 ∈ {0, 1}∗ (1)

P0 = R ‖ T ‖ RV (2)

C0 = EK0(P0) (3)

After picking an ephemeral AES key (K0) of size λ-bits, the
first ciphertext (C0) is generated by using the AES encryption
function (Ekey) as C0 = EK0(P0). The next block keys Ki,

R T RV Initialization vector

K0

AES-ECB

Ciphertext C0

⊕Plaintext P0

Ki

...

Server Puzzle SP

CT0...iT RV

RV0→

K0
k→

*RV0→ :( -0)-bits long random vector ∊ {0,1}*

HMACK0(C0)

CT0

K1

AES-ECB

Ciphertext C1

⊕Plaintext P1

HMACK1(C1)

CT1

RV0→k C0
k→ AES-ECB

Ciphertext Ci

Plaintext Pi

HMACKi(Ci)

CTi

RV0→k Ci-1
k→

Figure 11: Our proposed server puzzle construction.

for 1,..,i are generated by using a k-bit random vector and
(λ− k)-bits of the prior ciphertext.

K
(0→λ)
i = RV (0→k) ∈ {0, 1}∗ || C(k→λ)

i−1 (4)

The next plain texts Pi, for 1,..,n are XORed with the (i−1)-
th AES key Ki−1 to eliminate the identical ciphertext blocks
and to force sequential i-round operation.

Pi = Ki−1 ⊕ P(i−1), for i=1,..,n (5)

The corresponding ciphertexts (C(0..i)) are generated using
symmetric AES encryption EKi(Pi).

Ci = EKi(Pi), for i=1,..,n (6)

We use the HMAC function to generate short ciphertext
blocks (CTi) since the corresponding ciphertext blocks are
of the same length as plaintext blocks.

CTi = HMACKi(Ci), for i=0,..,n (7)

Our server puzzle (SP) consists of initialization vectors, i
ciphertexts, and a (λ − k)-bits key. The puzzle SP is sent
to the server (adversary) upon detection of any sign of DoS
attacks. Our server puzzle generation is described in Fig. 11.

SP = T ‖ RV ‖ CT(0..i) ‖ K(k→λ)
0 (8)

Upon receiving the server puzzle SP, the server (adversary)
is required to solve a k-bit, i-round AES brute force problem
(using the ‘brute force function’ BF ).

Ki = BF (Pi, Ci) (9)

The answer (SA) must contain the existing parameters
with a HMAC using Ki (see Fig. 12).

SA = R ‖ T ‖ RV ‖ HMACKi(R ‖ T ‖ RV ) (10)

To verify the answer SA, the device only needs to perform
one HMAC operation.

Benefits. Our server puzzle construction offers four bene-
fits for IoT applications:

(1) It can be used generally in IoT protocols since it is
based on standard AES/HMAC and does not depend
on other parameters.
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(2) Puzzle generation requires i-round AES/HMAC sym-
metric operations, which are lightweight even on
extremely constrained devices.

(3) Although i ephemeral AES keys are used, the device
needs to store only one AES key (Ki) to verify the
puzzle.

(4) The hardness of the problem is dynamically ad-
justable in two ways: 1) the length of the AES key
k and 2) the number of rounds i. The device can
control the expected time spent by the attacker by
adding more rounds.

EC-JPAKE with DoS countermeasure. With our pro-
posed server puzzle scheme and cookie approach, we add
optional DoS defensive steps to EC-JPAKE (see Fig. 13).
Note that these steps are optional; they are not used when
there is no evidence of DoS attack in the protocol execution.
We further modeled EC-JPAKE with our SP using Tamarin
for DoS attack verification. Tamarin verified EC-JPAKE with
our SP as resistant to DoS attacks.

7 CONCLUSION

In this paper, we presented a practical automated formal
analysis of IoT protocols using the Tamarin prover under
D-Y, eCK, and PFS. Upon protocol model/code changes,
formal symbolic models will require minimal effort to per-
form substantial full analysis. We investigated the critical

R T RV Initialization vector

Ciphertext C0

⊕Plaintext P0

Ciphertext C1

⊕Plaintext P1

Ciphertext Ci

Plaintext Pi

...

Puzzle answer SA = HMACKi(R, T, RV)

K1

BF-AES RV0→k C0
k→λ

K0

BF-AES RV0→k K0
k→λ

Ki

BF-AES RV0→k Ci-1
k→λ

Figure 12: Server puzzle solving procedure.

Alice (Device) Bob (Server)

�1 ∈ �, �1 = g�1

�2 ∈ �, �2 = g�2

�1, �2 ZKP for (�1, �2), [puzzle SP]

Verify ZKP for (�1, �2)

Verify if �2  0

�3 ∈ �, �3 = g�3

�4 ∈ �, �4 = g�4

�5 = (�1�2�3)
�4⋅s

�3, �4,	�5, ZKP for (�3, �4), ZKP for �4⋅s , [SA]

Flight 1

Flight 2

Verify ZKP for (�3, �4)

Verify if �4  0

�6 = (�1�3�4)
�2⋅s

Verify ZKP for �4⋅s 

K =
�4

�2⋅s(    )
�5 �2

KA                = g(�1 + �3)⋅�2⋅�4⋅s  

Session key = h(KA)

�6, ZKP for �2⋅s

Flight 3

*ZKP : Zero-Knowledge Proof

*s : pre-shared password 

[] : optional steps for DoS protection

[Cookie request]

[Cookie verification]

[SA = solve puzzle SP]

[Verify puzzle SA]

[increased puzzle SP' with cookie]

[SA' with cookie]
[SA' = solve puzzle SP']

[Repeat puzzle if verification fails]

Verify ZKP for �2⋅s 

K =
�2

�4⋅s(    )
�6 �4

KB = g(�1 + �3)⋅�2⋅�4⋅s  

Session key = h(KB)

Figure 13: EC-JPAKE protocol with our proposed
DoS attack countermeasure.

challenges of formal security analysis tools in the IoT and
proposed two solutions, which will be useful in the analysis
of complicated protocol scenarios.

Furthermore, we showed how to represent DoS attacks in
the model; we showed that the majority of IoT protocols
are vulnerable to cryptographic DoS attacks. To protect IoT
devices from such attacks, we proposed a server puzzle that
can be used generally in any IoT protocols. Our server puzzle
features lower computation and communication complexity
for use in constrained IoT devices, yet offers control over
hardness.
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