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Abstract. We present results of a thorough analysis of the OpenPGP
Web of Trust. We conducted our analysis on a recent data set with a
focus on determining properties like usefulness and robustness. To this
end, we analyzed graph topology, identified the strongly connected com-
ponents and derived properties like verifiability of keys, signature chain
lengths and redundant signature paths for nodes. Contrary to earlier
works, our analysis revealed the Web of Trust to be only similar to a
scale-free network, with different properties regarding the hub structure
and its influence on overall connectivity. We also analyzed the commu-
nity structure of the Web of Trust and mapped it to social relationships.
Finally, we present statistics which cryptographic algorithms are in use
and give recommendations.

Keywords: Web of Trust, OpenPGP, GnuPG, PGP, Community Struc-
ture

1 Introduction

Pretty Good Privacy (PGP) and the GNU Privacy Guard (GnuPG) are imple-
mentations of OpenPGP (RFC 4880 [1]). Instead of a hierarchical trust architec-
ture with Certification Authorities as in X.509, OpenPGP employs a certification
model where any entity can certify another entity. This results in a so-called Web
of Trust (WoT).

In this paper, we describe the results of a thorough investigation of the Web
of Trust as established by OpenPGP users. We employed graph analysis to find
answers to security-related issues in the WoT. Our contributions are the follow-
ing. First, we analyzed the OpenPGP WoT’s graph components and identified
its macro structures. We will see that this is a prerequisite for more detailed
analyses as there is a single most important component. Second, we analyzed
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the ‘usefulness’ of the WoT for its users. We investigated properties like the
length of certification chains, redundant paths, the Small World effect in the
WoT and mutual signatures. Third, we determined how robust the WoT is to
changes like the random or targeted removal of keys, which can be the result of
key expiration, revocation or even attack. Fourth, as the WoT shows properties
of a social network, we used State-of-the-Art algorithms to detect community
structures and map them to social relations. Finally, we analyzed which crypto-
graphic algorithms are in use and whether this is problematic or not.

The remainder of this work is organized as follows. The following section
provides background to OpenPGP. Section 3 describes our methodology. Sec-
tion 4 presents our results concerning the WoT’s usefulness and robustness. The
results of our analysis of the community structure are presented in Section 5.
Section 6 presents statistics about key properties. Section 7 puts this work into
the context of previous, related publications and highlights the differences from
our work.

2 Background

Essentially, the WoT is a user-centric and self-organized form of PKI. A user
in OpenPGP is identified by a user ID, a data structure that contains a user
name and e-mail address. Every user ID is associated with a public/private key
pair (either DSA/ElGamal or RSA). Users ‘issue certificates’ to each other by
signing another key (i. e. user ID and public key) with their private keys. The
exact mechanism of creation of the WoT is not fully known, but it is commonly
agreed that personally established contact between users plays a major role, par-
ticularly organized events like Keysigning Parties at conferences and meetings.
OpenPGP keys are frequently uploaded to a network of key servers. These use
the Synchronizing Keyservers (SKS) protocol for synchronization. A snapshot
contains a complete history of the network: keys cannot be deleted from an SKS
server and timestamps of key creation, signature creation, expiration dates and
recovation dates are stored.

The advantages and disadvantages of different PKI structures and trust mod-
els have been discussed, among others, by Perlman [2] and Maurer [3]. In contrast
to the hierarchical X.509, which is said to suffer from insufficient Certification
Authority (CA) practices and insufficient control over intermediate CAs [4], the
situation is different in OpenPGP. Firstly, certificates are not verified by follow-
ing a certification chain from some Root CA (with the chain already known in
advance3), but by finding a certification path from the own key to the key that
is to be verified as belonging to some entity. Secondly, OpenPGP uses a trust
metric to allow users to assess the trust in a key-entity binding. There are two
notions of ‘trust’: ‘Introducer trustworthiness’ refers to how much another user
is trusted to apply care when verifying an identity. This value is determined
and stored locally for every locally known user ID. ‘Public-key trustworthiness’

3 E. g., most HTTPs servers are configured to send the full chain in the SSL/TLS
handshake.



is the degree to which a user claims to be sure of a key-entity binding. This
value is stored as part of a signature. Before using someone else’s public key,
users must determine the key-entity binding and assess whether it’s likely to be
correct. Different trust metrics can be applied here. GnuPG, for example, uses
a default setting that focuses on introducer trustworthiness: this must either be
‘full’ for all keys on the certification path, or there must at least be three redun-
dant certification paths to the key in question. Also, a certification path must
not be longer than 5 keys. Trust in OpenPGP thus relies on social relations for
identify verification; ideally a WoT should model real-world relationships. CAs
are not forbidden in OpenPGP – they are merely a special kind of user. While
very flexible, this trust model is very demanding on the user. OpenPGP’s model
can thus be viewed to be more focused on the local ‘environment’ of a user – it
is infeasible for a user to determine introducer trust for everyone in the WoT. A
user can only make reasonable assessments about keys to which paths are short,
and lead over social contacts. This also helps with the ‘Which John Smith?’
problem: looking for the key of a certain ‘John Smith’ is much easier if it is
known that John Smith should share some of one’s own contacts.

The open nature of the WoT could lead one to speculate whether large-
scale attacks on the WoT are possible, where a malicious entity certifies a large
number of keys to trick others. However, this attack is much more difficult than
it seems. Assume Alice wants to verify a fake key for the identity Bob, which
has only been signed by a number of false identities signed by Mallory. Alice
must establish a certification path to the ‘fake Bob key’ using the faked signed
keys. These faked keys would only be used in a path search if Alice has manually
and explicitly set a trust value for Mallory and the false identities. As setting
introducer trust is a manual operation, it is unlikely that Alice would assign the
needed trust to unknown and ‘strange’ entities. For this reason, we view it as an
unlikely attack.

Also note that multiple keys per user is not uncommon and not evidence of
such an attack: one might for example wish to use different keys for business and
private matters, or for different levels of security. Multiple (non-revoked, non-
expired) keys for one person/entity occur quite commonly in the key database
without any evidence for malicious behavior.

From these considerations, we can thus derive several important properties
a ‘good’ WoT must exhibit. It must allow to find certification paths between
many keys, otherwise it is not useful. The length of paths is essential: short
paths reduce the number of entities on the path that a user has to trust and thus
increase a user’s chances of accurate assessment of key authenticity. Giving and
receiving many signatures is important, too: it increases the chances of several
redundant paths between nodes, which is beneficial for GnuPG’s trust metrics. It
also means that removal of a key has little impact on reachability, which increases
the WoT’s robustness. Finally, a good WoT should model social relations and
social clustering well: where ‘communities’ of users exist, chances of being able to
accurately assess trustworthiness of users within the same community increase.



Total number of keys 2,725,504

Total number of signatures 1,145,337

Number of expired keys 417,163

Number of revoked keys 100,071

Number of valid keys with incoming or outgo-
ing signatures

325,410

Number of valid signatures for the latter set
of keys

816,785

Table 1: Our data set.

3 Methodology

In this section, we describe how we extracted the graph topology and summarize
the metrics we used in the graph analysis.

3.1 Graph Extraction and Analysis

We modified the SKS software to download a snapshot of the key database as
of December 2009.

Table 1 shows properties of our data set after our extraction. The data
set contains about 2.7 million keys and 1.1 million signatures. Of these, about
400,000 keys were expired, another 100,000 revoked. About a further 52,000 keys
were found to be in a defective binary format. The actual WoT, which consists
only of valid keys that have actually been used for signing or have been signed,
is made up of 325,410 keys with 816,785 valid signatures between them. Conse-
quently, the majority of keys in the data set is not verifiable (no signature chains
lead to them) and does not belong to the WoT. Note that the data set contains
only keys from key servers. We cannot know the number of unpublished keys.

When representing the WoT as a graph, we represented keys as nodes and
signatures as directed edges. This was a deliberate choice. An alternative would
have been to map keys to individual persons. However, such a mapping is not
easy to define due to changes of e-mail addresses, spelling of names and the use
of pseudonyms. Ultimately, it is keys that sign other keys, and we thus chose to
analyze a key-based graph.

3.2 Terms and Graph Metrics

We briefly describe terms and metrics that we use in our analysis of the WoT.
For precise definitions, we refer the reader to the Appendix.

Strongly connected components (SCCs) A strongly connected component
is a maximally connected sub-graph of a directed graph where there is at least
one directed path between every node pair u, v. Note that the paths from u to
v and v to u may incorporate different nodes.



Distances, Eccentricity, Radius and Diameter The distance between two
nodes is the length of the shortest path between them. The characteristic dis-
tance of the graph is the average over all distances in the graph. Eccentricity is
a node property that indicates the distance to the node farthest away from this
node in the graph. Graph radius is defined as the minimum over all eccentricities
and the diameter is defined as the maximum over all eccentricities.

Neighborhoods A node v’s neighborhood is the set of all nodes for which the
distance from v is at most a certain value.

Clustering Coefficient The clustering coefficient is a measure of transitivity in
a graph. It indicates the probability that two neighbors of a node are themselves
neighbors, i.e. have an edge between them.

Correlation of Node Degrees Pastor-Satorras et al. [5] defined a measure for
the correlation of node degrees in a function knn. It determines whether nodes
with similar degrees have edges between them. The assortativity coefficient [6] is
a similar measure. It measures how many nodes with high degree are connected
mainly to other nodes with high degree.

4 Results

We present the results of our analysis.

4.1 Macro Structure: strongly connected components (SCCs)

Within SCCs, there is at least one signature chain between every key pair. SCCs
are thus important for participants of the WoT: mutual verification of key au-
thenticity is only possible for participants within the same SCC. An optimally
meshed WoT should be one giant SCC.

We computed the SCCs of the graph, and found 240,283 SCCs in the WoT.
However, more than 100,000 of these consisted of a single node and about 10,000
SCCs consist of node pairs. The largest SCC (LSCC) consists of about 45,000
nodes. The remaining SCCs mostly have a size between 10 and 100 nodes. Fig-
ure 1 (a) shows the distribution. The SCCs can be arranged in a star formation
around the LSCC in the middle (Figure 1 (b)).

Many SCCs have uni-directional edges to the LSCC, but extremely few have
edges between each other. Out of all smaller SCCs, about 18,000 nodes show a
uni-directional edge into the LSCC, making it (in principle) possible for such a
key to verify keys from the LSCC. In the other direction, 92,000 keys outside the
LSCC are reachable from a key within the LSCC. We found three interesting
hubs in the LSCC and one regional particularity. The German publisher Heise,
CACert and, until recently, German DFN-Verein operate or have operated CAs
to sign keys. Together, they have signed about 4,200 keys in the LSCC. The
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Fig. 1: (a) Size distribution of SCCs. (b) Plot of SCCs down to a size of 8.

Heise CA alone has, in total, signed 23,813 keys – yet of these only 2,578 are in
the LSCC.

This SCC structure gravely impacts the usability of the WoT. First of all,
the large number of smaller SCCs means that even among those users who have
made the effort to upload their keys to a key server, most do not participate
actively in the WoT. Otherwise, their SCCs would already have merged with
the LSCC (one mutual signature is enough). This is also emphasized by the
following comparison. The ratio of edges:nodes in the LSCC is 9.85; the same
ratio for the total WoT is 2.51. Signature activity in the LSCC must thus be
much higher than in the rest of the WoT. However, strong user activity is very
desirable to achieve a better meshing in the WoT.

Second, a high percentage of participants in one of the smaller SCCs are un-
able to verify most keys in the WoT. The LSCC is really a structure of paramount
importance: the keys in the LSCC constitute only 14% of the keys in the WoT,
but only the owners of these keys can really profit in a significant way from the
WoT. They can build signature chains to all keys in the LSCC plus to twice as
many keys outside of the LSCC. Thus, a recommendation for new participants
would be to obtain a signature from a member of the LSCC as early as possible
to make their key verifiable. A good choice is also to get a (mutual) signature
of one of the CAs in the LSCC. With such a signature, paths can be built to
all keys in the LSCC, plus to a large number of keys outside the LSCC that are
only reachable via the CA. This emphasizes that a WoT can benefit from CAs.

The remainder of our analysis focuses on the LSCC as the most relevant
component for participants.



4.2 Usefulness in the LSCC

‘Usefulness’ is a term that is difficult to express formally. It can be defined in
several dimensions. An obvious one is how many keys are verifiable from a given
key, and how many paths to other keys can be found from the given key. The
higher these numbers are, the more useful the WoT is from the perspective of
this key. Recall that introducer trustworthiness is not stored in the signatures:
the following discussion thus relates to upper bounds.

Distances We first analyzed distances between keys in the graph. The average
distances between nodes in the LSCC (see Figure 2(a)) range between 4–7, which
is at best just below GnuPG’s limit (path length 5), but exceeds it at worst. The
eccentricity in the LSCC is much higher: it is almost exclusively between 26–31.
To determine the implications of this for usefulness, we identified how many keys
are reachable from a given key within a certain distance.

We computed the set of verifiable keys as the nodes in a h-neighborhood for
h = 1, .., 5 (see Definition 5 in the Appendix). Figure 3 shows the CDF of h-
neighborhoods. For the 2-neighborhood, we see a steep incline, from which we
can conclude that this neighborhood must be relatively small for all nodes. The
size of the neighborhoods grows considerably for increasing h. For h = 3, the
third quartile is about 3,300. For h = 4 and h = 5, it becomes 16,300 and 30,500,
respectively.

Our findings indicate that signature chains within GnuPG’s restrictions are
sufficient to make a very large fraction of the keys in the LSCC verifiable. This
is a good result for usefulness and shows that the LSCC is quite well meshed.
However, for h = 5, the maximum number of reachable keys we found was 40,100.
This means that, on average for all keys, there will be almost 5,000 keys (a tenth
of the LSCC) to which no path at all can be found within GnuPG’s restrictions.

Small World Effect and Social Links The size of 5-neighborhoods shows
that paths are frequently very short. A possible explanation for this is a Small
World effect, which – following [7] – can be informally understood to be the
phenomenon that the average path length between any two nodes is significantly
shorter than could be expected by judging from graph radius and diameter. A
high clustering coefficient is often viewed as indicative. We investigated this in
the LSCC. As there does not seem to be a universally accepted definition of the
clustering coefficient for directed graphs, we reduced the directed graph to an
undirected one (omitting the direction of edges and merging duplicates). The
clustering coefficient we computed is C = 0.46. This indicates that, on average,
roughly half of all neighbors of a node have edges between them. The value is
of the same order as described in [7] for social networks with strong clustering.
The characteristic distance in the LSCC is 6.07, while the diameter of the graph
is 36 and the radius 16. Our finding is that the LSCC does indeed show a Small
World effect. This indicates social clustering. Together with the short paths, this
would make trust assessments easier for users. We explore the social nature of
the WoT further in Section 5.
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Fig. 2: Distribution of (a) average distances, (b) indegree in LSCC.

Node Degrees Recall that GnuPG’s trust metrics view redundant and distinct
signature chains as beneficial for a key’s trustworthiness. A high node indegree
thus means that the corresponding key is more likely to be verifiable by other
keys. A high outdegree increases the likeliness to find redundant signature chains
to other keys. We computed the average indegree (and outdegree) in the LSCC
as 9.29. However, as can be seen in Figure 2(b), the distribution of indegrees in
the LSCC is skewed. The vast majority of nodes have a low indegree (i. e., 1 or
2). The result for the outdegrees is very similar: as can be seen in Figure 4(a),
there is a positive correlation between indegree and outdegree of a node. The
plot for outdegrees is indeed so similar to the one for indegrees that we omitted
it here. About a third of nodes in the LSCC have an outdegree of < 3. Together,
these results mean that the WoT’s usefulness has an important restriction: many
nodes need to rely on single certification paths with ‘full’ introducer trust and
cannot make use of redundant paths.

Mutual Signatures (Reciprocity of Edges) If many WoT participants
cross-signed each other, this would be a great improvement in overall verifiability
of keys. We computed the reciprocity of edges, i. e. the fraction of uni-directional
edges to which there exists a uni-directional edge in the other direction. The
LSCC has a reciprocity value of 0.51. This shows that there is room for improve-
ment: the LSCC would profit much if more mutual signatures were given, which
would of course also strengthen indegree and outdegree and shorten distances.
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4.3 Robustness of the LSCC

The robustness of the LSCC is also an interesting topic: how is the LSCC con-
nected internally, and hence how sensitive is it to removal of keys? In the context
of OpenPGP, the random removal of a node can be the result of an event like
key expiration or revocation, which invalidates paths leading over the key in
question. These events can and do occur in practice. Targeted removal of a key,
however, is very hard to accomplish as SKS never deletes keys and stays syn-
chronized. An attacker would need an unlikely high amount of control over the
SKS network to make a key disappear.

Scale-Free Property Scale-freeness in a graph means that the node degrees
follow a Power Law. Connectivity-wise, scale-free graphs are said to be robust
against random removal of nodes, and vulnerable against the targeted removal
of hubs (which leads to partitioning). This is usually explained by the hubs being
the nodes that are primarily responsible for maintaining overall connectivity [8].
We thus first investigated to which extent the WoT shows this property.

The double-log scale in Figure 2(a) could lead one to the conclusion that
the distribution of node degrees follows a Power Law. However, Clauset et al.
argued in [9] that this is not indicative and methods like linear regression can
easily be inaccurate in determining a Power Law distribution. We followed the
authors’ suggestion instead and used the Maximum Likelihood method to derive
Power Law coefficients and verified the quality of our fitting with a Kolmogorov-
Smirnov test. [9] gives a threshold of 0.1 to safely conclude a Power Law distribu-
tion. Our values for indegrees and outdegrees were 0.012 and 0.011, respectively.
As this is off by a factor of 10, our conclusion is that a Power Law distribution
is not plausible. Consequently, the graph cannot be scale-free in the strict sense
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of the definition. This finding is contradictory to earlier works by Boguna et al.
[10] and Capkun et al. [11].

The question is yet whether the graph is still similar to a scale-free one.
Apart from high variability of node degrees, a set of high-degree nodes that
act as inter-connected hubs are characteristic for scale-free graphs [8, 12]. The
positive correlation between the degree of nodes and the average degree of their
neighbors (Figure 4(b)) suggests that nodes with high outdegrees do indeed
connect to other such nodes with high probability. To bolster our finding, we
computed the assortativity coefficient (see Appendix A.4) and obtained a value
of 0.113. This is similar to what has been computed for other social networks
with a hub structure [7]. Our conclusion is thus that the graph is similar to a
scale-free one and exhibits a hub structure, but is not scale-free in the strict
sense.

Random Removal of Nodes Based on this finding, we investigated how the
LSCC reacts to random removal of nodes. We removed nodes and recomputed
the size of the remaining LSCC as an indication of loss in overall connectivity.
For random removal, we picked the nodes from a uniform distribution. Figure
5 shows our results. The graph is very robust against the random removal of
nodes: we must remove 14,000 nodes to cut the LSCC’s size by half. To reduce
it to a quarter, we must remove more than half the nodes (25,000).
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The conclusion here is that events like key expiration or revocation do not
greatly influence the robustness, and consequently the usability, of the WoT.

Targeted Removal of Nodes and CAs For targeted removal, we chose nodes
with highest degrees first. The graph was more robust than expected. When we
removed all nodes with a degree of more than 160 (240 nodes), the size of the
LSCC was still 40,000. Only when we proceeded to remove all nodes with a
degree of more than 18 (∼ 5,000 nodes), the LSCC was half its size. Removing
2,500 more nodes, we finally cut the LSCC down to about 1/9 of its original
size. This means that nodes with lower degrees (< 18) play a significant role in
overall connectivity (although the decay of the LSCC is quite pronounced after
they are also removed). The rather slow decay stands in contrast to the rapid
decay upon removal of the best-connected nodes that is commonly observed in
scale-free networks. Targeted removal of keys does not affect the WoT greatly,
and is not an efficient attack. The hub structure is not the single reason for
highly meshed connectivity in the WoT.

We decided to strengthen the attack by removing the keys of the three CAs.
Our finding was similar: the LSCC split into one LSCC of size 42,455 and 1,058
very small SCCs. This means that the CAs, although beneficial in making keys
verifiable, are not responsible for holding the LSCC together. The characteristic
distance of the new LSCC remained almost unchanged (6.25); radius, diameter
and eccentricity remained the same. This means that path properties did not
change, either. Our conclusion here is that attempting to selectively remove
keys from keyservers, even shutting down CAs, would not change the WoT’s
properties significantly. It is very robust in this respect.



5 Community Structure of the Web of Trust

We know from Section 4 that the WoT shows the small-world property, which
hints at social clustering. Newman and Park also noted that a high degree of
clustering is typical for social networks [13]. Fortunato [14] calls such subsets of
nodes ‘communities’ if the nodes have high intra-connectivity in their subset,
but the subset as such shows a much lower connectivity to nodes outside. Social
clustering can make the WoT more powerful: it is more likely that members of
a cluster know each other at least to some extent and can thus better assess the
trustworthiness of particular keys.

Community Detection We analyzed the WoT with State-of-the-Art algo-
rithms for community detection to determine whether a pronounced community
structure exists and can be mapped to ‘real-world’ relationships. Also, we at-
tempted to find whether signing events like Key Signing Parties can be identified
in the graph. Unfortunately, algorithms for community detection are often de-
fined for undirected graphs. Also, signatures store little information that helps
with identifying social links and events in time. We decided to use DNS domains
in user IDs and timestamps of signature creation as a basis. As an algorithm for
a directed graph, we chose the one by Rosval et al. [15]. For undirected graphs,
we chose the algorithms by Blondel et al. [16] and COPRA [17], based on sugges-
tions in [18]. COPRA allows overlapping communities, but is non-deterministic.
We ran it 10 times and computed differences. As a measure for the quality of
a dissection, we used Modularity [19], which relates the amount of intra-cluster
edges of a graph with communities to the expected value for a graph without
communities. Note that the definition for overlapping communities is different,
so the values for COPRA and BL cannot be compared directly.

Only the algorithms by Blondel et al. and COPRA yielded useful results.
The algorithm by Rosval et al. computed a dissection into 2,869 communities,
almost all of them without any intra-cluster edges. We considered these results
unreliable and ignored them in our subsequent evaluation.

Blondel et al. and COPRA Table 2 shows the results of dissections with
Blondel et al. (BL) and COPRA for communities of size > 3. Both BL and
COPRA are configurable: BL can be repeated in iterative phases and COPRA
requires a (user-chosen) parameter v to reflect the degree of overlapping. For
BL, phase 2 yielded the best results (plausible number of communities, high
modularity). For COPRA, values of v up to 3 were found best. We know from
[20] that modularity values > 0.3 indicate a significant community structure.
Depending on the algorithm and chosen parameters, between 94% (COPRA)
and 99% (BL) of nodes in the LSCC belonged to such a community.

BL and COPRA agree on the same orders of magnitude with respect to the
number of communities and nodes therein. The high modularity values and the
general shape of community distributions by size (see Figure 6) are also similar.
Most communities are very small, but a significant number of large or very large



Method Modularity Communities found (size > 3)

BL (l = 2) 0.70 936
BL (l = 5) 0.71 186

COPRA (v = 1) (0.78) 1,421
COPRA (v = 3) (0.79) 1,354

Table 2: Dissection of the LSCC into communities: algorithms BL and COPRA.
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Fig. 6: Distribution of communities by size.

communities exist. Similarities, however, end here. COPRA indicates one ex-
tremely large community of 19,000-21,000 members. BL finds more communities
of medium size (100-500) and mid-large size (500-5,000). To further investigate
this, we analyzed how communities are connected. COPRA found that most
small communities are clustered around the largest community and mostly only
link to this community. BL found several large communities to which the smaller
communities connect.

Mapping to Domain Names and Keysigning Parties We analyzed how
the community dissections mapped to top-level and second-level domains (TLDs
and SLDs) in the user IDs. We say a community is dominated by a domain if
at least 80% of its nodes belong to that domain. We say a community can be
assigned to a domain if at least 40% of its nodes belong to it.

Table 3 shows the results. For both BL and COPRA, we found that a large
percentage of communities are dominated by a top-level domain: between 47%
and 58%. Only if a community was not dominated, we checked if it could at least



Method dominated
by TLD

assignable
to TLD

dominated
by SLD

assignable
to SLD

signatures
within 30d

BL (l = 2) 499 (53%) 417 (45%) 41 (4%) 254 (27%) 115 (12%)
BL (l = 5) 85 (47%) 85 (47%) 15 (8%) 38 (21%) 26 (14%)

COPRA-1 824 (58%) 564 (40%) 178 (13%) 429 (30%) 572 (40%)
COPRA-3 792 (58%) 525 (38%) 187 (14%) 425 (31%) 555 (41%)

Table 3: Community structure with respect to membership in top-level domains
(TLD) and second-level domains (SLD).

be assigned. A further 38%–47% could be said to be assignable to a TLD. This
result did not change much when we disregarded generic TLDs (.com etc.): with
COPRA, 38% of communities were dominated by a country’s TLD and a further
23% were still assignable. Results for BL were similar. Together, assigned and
dominated communities make up by far the largest part of communities found
(98% for BL-2 and COPRA, v = 1). However, the picture changes for second-
level domains. With COPRA, only about 13% of communities are dominated by
an SLD and only a further 30% of communities can be assigned to an SLD.

Keysigning Parties are events where one can expect signatures to be uploaded
to key servers within a short time frame. Table 3 shows the percentage of nodes
in the communities where signatures were created within a month. We find poor
results for BL, but much better ones for COPRA. In about 40% of communities,
the signatures were created within 30 days of each other.

Conclusion with Respect to Community Detection Concerning commu-
nity detection, it is difficult to reach compelling conclusions. We provide ours
as a basis of discussion. Both algorithms agreed that a large number of smaller
communities exist. Given the huge number of TLDs and SLDs and given that the
WoT graph spans more than a decade, the results seem statistically significant
enough to conclude that the community structure does indeed capture some ‘so-
cial’ properties of the WoT. However, grouping by TLD is a blunt measure, and
the mappings to SLDs were by far not as compelling. Our tentative conclusion is
that the signing process in the WoT is indeed supported, to a traceable extent,
by real-world social links. The social nature of the WoT is not a myth. At least
where certification paths are short, the community structure should make it eas-
ier for users to assess the trustworthiness of a key. Beyond this result, however,
community detection is yet too imprecise to offer more succinct conclusions.

6 Cryptographic Algorithms

Table 4 presents results on the use of hash and public key algorithms in the WoT.
Several algorithms encountered raise security concerns: MD5 can probably be
said to be an unwise choice today [21]. SHA-1, although much safer, is also



Algorithm Occurrences

SHA1 398,849
MD5 41,700
SHA256 5,031
SHA512 2,472
SHA224 532
RIPE-MD/160 122

Signatures total 446,325

(a)

Algorithm Occurrences

DSA-1024 36,555
RSA-1024 3,903
RSA-2048 2,408
RSA-4096 1,198
RSA-768 257
RSA-512 203
RSA-3072 96

Keys total 44,952

(b)

Table 4: Occurrences of (a) hash algorithms, (b) public key algorithms.

scheduled for phase-out [22]. RSA keys of 768 bits have been factored [23] and
a length of more than 1,024 bits is recommended since 2010 [24].

Especially the comparatively high number of RSA keys with a key length
of ≤ 1,024 bits is somewhat problematic. We investigated these keys and found
that a substantial number of them appears well-connected, based on their in-
and outdegrees. It seems reasonable to assume that quite a few users trust these
keys as introducers, thus enabling their use in certificate chains. Although not
a threat yet and possibly also not for the next few years, it opens up attack
opportunities if factorization of 1,024 bits keys should become feasible [23].

7 Related Work

The OpenPGP WoT has been the subject of investigation before, albeit at other
stages of its development and with a focus that was less on security-relevant
properties. Capkun et al. [11] analyzed several structural aspects of the WoT of
2001. They did not investigate aspects like communities but presented a model
to create similar graphs. They found a small characteristic distance and a high
clustering coefficient. The authors claimed to have found a Power Law distri-
bution for node degrees. Our own findings are that a Power Law distribution is
not plausible. However, the graph is similar to a scale-free one, although its hub
structure is not solely responsible for robustness. Note however that the rigid
methods in [9] were generally not as widely in use then, and the graph from
2001 contained 4 times fewer nodes. Boguna et al. [10] also analyzed a PGP
graph from 2001. They converted the graph to an undirected one and analyzed
node degrees and clustering coefficient. They also claimed a Power Law for node
degrees and determined a clustering coefficient on the same order as the one we
found. The authors also applied an (older) algorithm for community detection.
They claimed the community distribution follows a Power Law, too. All of the
above have in common that they used significantly older data sets, and the focus
was less on security issues like usefulness and robustness. Furthermore, our com-



munity dissection was conducted with more recent algorithms, with the aim of
mapping communities to real-world groups. The OpenPGP community has also
contributed some effort in analyzing the WoT’s structure. The wotsap project
[25] creates snapshots of the signatures in the WoT. However, it only considers
the LSCC and does not store other key properties. We also found the data set to
be incomplete (10% of keys missing) due to a bug. Penning [26] used the wotsap
data set to determine aspects like distances, node distribution and robustness
based on node removal.

8 Discussion and Conclusion

We have presented several results relating to security aspects of the OpenPGP
Web of Trust. We found that only keys in the Largest SCC (LSCC) can really
profit from the WoT. This severely limits the reach of the WoT to a fraction
of its users: only about 45,000 keys out of 2 million can use the WoT without
restrictions. A large fraction of keys in the smaller SCCs can make very little
use of the WoT or none at all. However, for users with keys in the LSCC, the
situation is much better. We found their certification chains to be relatively
short. There is also a pronounced Small World effect. We followed this up with
an investigation of the community structure of the WoT. While algorithms for
community detection can capture the social groups of the WoT on a very coarse
level only, the graph does exhibit a very strong community structure. Another
positive aspect is that about 40,000 of 45,000 keys are reachable within GnuPG’s
restrictions (5 hops), and several thousand even via 3 hops or less. This is positive
for the WoT as it can aid users in making better trust assessments regarding
other keys that are close and in the optimal case also in the same community.
The CAs we found help greatly in making keys verifiable. This is a viable option
for users. Random removal of keys (e. g., due to expiration or revocation) is not
a problem for the robustness of the WoT. The WoT is also very robust against
targeted attacks; CAs are not fundamentally relevant for robustness.

However, we found that low indegrees and outdegrees are far too common.
This reduces the number of redundant paths between keys, which means that
many users would need to have ‘full’ introducer trust in known entities. Mutually
cross-signing more often would help here.

In essence, our conclusion is that the WoT is likely to be quite an effective
PKI structure within smaller node neighborhoods, and particularly for those users
that frequently sign other keys and are active in the WoT. The cryptographic
algorithms that are in use can be generally considered to be still secure. However,
keys that have issued MD5-based signatures should be replaced and signatures
renewed. Also, a stronger move towards key lengths of more than 1,024 bits is
desirable.
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A Common Terms and Graph Metrics

Based on the common notions of graph theory, we define some terms, follow-
ing [27] herein. In the following, let V be the set of nodes of the graph G, with
|V | = n. u and v indicate nodes.

A.1 Distances

Distances Between Nodes The distance d between two nodes is defined as
the length of the shortest path between these two nodes.

Distances in the Graph The average distance of the graph, d̄, is the average
over all distances in the graph:

d̄ =
1

n2 − n
∑

u6=v∈V

d(u, v) (1)

Eccentricity The eccentricity of a node u, ε(u), is defined as the maximum
distance to another node, i.e.

ε(u) = max{d(u, v)|v ∈ V } (2)



Graph Radius and Diameter The diameter of a graph is defined as the
maximum over all eccentricities:

dia(G) = max{e(u)|u ∈ G} (3)

The radius is defined as the minimum over all eccentricities:

rad(G) = min{e(u)|u ∈ G} (4)

A.2 Node Neighborhoods

We define the h-neighborhood of a node v as the set of all nodes from which the
distance to v is at most h:

Nh(v) = {u ∈ V |d(v, u) ≤ h} (5)

A.3 Clustering Coefficient

The clustering coeffcient indicates the probability that two neighbors of a node
have an edge between them.

Let G = (V,E) be the undirected graph. A triangle 4 = {V4, E4} is a
complete sub-graph of G with | 4 | = 3. The number of triangles of a node v is
given by λ(v) = |{4 : v ∈ V4}|. A triplet of a node v is a sub-graph of G that
consists of v, 2 edges, plus 2 more nodes such that both edges contain v. The
number of triplets of a node v can be given as τ(v) =

(
d(v)
2

)
. The local clustering

coefficient of v is defined as

c(v) =
λ(v)

τ(v)
(6)

c(v) indicates how many triplets of v are triangles. The global clustering
coefficient of G can then be defined as:

C(G) =
1

|V ′|
∑
v∈V ′

c(v) (7)

with V ′ = {v ∈ V : d(v) ≥ 2} to disallow non-defined values for τ(v).

A.4 Correlation of Node Degrees

Function knn as defined by Pastor-Satorras et al. Following Pastor-
Satorras et al. [5], we define a measure for the correlation of node degrees:

< knn >=
∑
k′

k′Pc(k
′|k) (8)

gives the average node degree of neighbors of nodes with degree k. Pc(k
′|k)

indicates the probability that an edge that starts at a node with degree k ends
at a node with degree k′.



Assortativity Coefficient The assortativity coefficient [6] is a measure whose
purpose is similar to the function defined in Definition 8. It measures the degree
of assortative mixing in a graph: nodes with high degree that are connected
mainly to other nodes with high degree. The assortativity coefficient takes values
between -1 and 1. Positive values indicate assortative mixing, negative ones do
not. According to Newman [6], assortative mixing is a property that distinguishes
social networks from other real-world networks (e.g. technical or biological ones).
It can thus be used to sub-differentiate between similar graphs that show a Small
World effect.


