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Abstract—Blockchain has recently gained momentum. Star-
tups, enterprises, banks, and government agencies around the
world are exploring the use of blockchain for broad applications
including public registries, supply chains, health records, and
voting. Dependability properties, like availability, are critical
for many of these applications, but the guarantees offered by
the blockchain technology remain unclear, especially from an
application perspective. In this paper, we identify the availability
limitations of two mainstream blockchains, Ethereum and Bitcoin.
We demonstrate that while read availability of blockchains is
typically high, write availability—for transaction management—
is actually low. For Ethereum, we collected 6 million transactions
over a period of 97 days. First, we measured the time for
transactions to commit as required by the applications. Second,
we observed that some transactions never commit, due to the
inherent blockchain design. Third and perhaps even more dramat-
ically, we identify the consequences of the lack of built-in options
for explicit abort or retry that can maintain the application in
an uncertain state, where transactions remain pending (neither
aborted nor committed) for an unknown duration. Finally we
propose techniques to mitigate the availability limitations of
existing blockchains, and experimentally test the efficacy of these
techniques.

I. INTRODUCTION

Blockchains are a new kind of replicated database (a ‘dis-
tributed ledger’) which can be operated without the control of
any single party. Blockchain technology emerged to support the
Bitcoin cryptocurrency [1]. A second generation of blockchains
are more general-purpose: transactions can record data about
any kind of application domain, and can deploy and execute
user-defined scripts (‘smart contracts’). This greatly expands
the potential uses for blockchain technology. Many startups, en-
terprises, banks, and governments are exploring its applications
in areas as diverse as electronic health records, voting, energy
supply, and protecting critical civil infrastructure [2]. These
applications typically involve cross-organizational business
processes [3], taking advantage of the neutral ground provided
by a blockchain. Many of these applications have critical
dependability requirements, even beyond those driven by the
size of trade in the underlying cryptocurrencies (millions of
US dollars per day').

Understanding the dependability properties supported by
blockchains has become crucial. Prominent blockchain systems,
specifically those using Nakamoto consensus [1], can only
offer probabilistic guarantees to their clients in terms of the
immutability of recorded transactions. Misinterpreting these
guarantees or underestimating the time required for a transaction
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Figure 1: Time (in second) to commit transactions in Ethereum

to become immutable may lead to failures in dependent
applications. This poses a significant problem for applications
that rely on blockchain as a component, data store, or software
connectors (as suggested by Xu et al. [4]).

To measure the availability of mainstream blockchains in
terms of their responsiveness, we have first to define the notion
of transaction commit needed by the applications running on
top of these blockchains. Clients can initiate transactions as
long as they are connected to active peers of the blockchain.
Although necessary, the activity of some of these peers is not
sufficient to guarantee the commit. A commit requires instead
that some peers create a sequence of blocks, whose first one
includes the transaction [5]. The length of the required sequence
may vary but is used by blockchain applications to consider
that the transaction has successfully executed. This number is
typically 6 in Bitcoin and 12 in Ethereum?.

The problem is that clients cannot expect a time for their
transaction to commit, despite sufficiently many blocks being
created every 3 minutes (resp. 1 hour) in expectation in
Ethereum (resp. Bitcoin). For example, consider Fig. 1, which
plots the cumulative distribution function (CDF) of the period
between the time we observed transactions being announced
and the time we observed them as committed (we detail
our experiment in Section IV). During our experiment, most
transactions (actually 61.5%) took actually more than 3 minutes
to commit, 13.8% of the transactions were not committed after
4.5 minutes, i.e., they experienced a delay of 50% of the target
commit time. This variance in time to commit a transaction
can lead to availability failures for client applications.

In this paper, we explore how mainstream proof-of-work
blockchains impact the dependability of systems built upon
them. We focus on the availability of functions that such systems
need, and how they are adversely impacted by a number of
factors. Our primary contributions are as follows.

Zhttps://ethereum.stackexchange.com/questions/183/
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We investigate which factors cause transactions to remain
uncommitted for much longer than the blockchain design
promises and previous work assumed. In particular, we find
that network reordering plays a much more important role
than previously assumed and can cause significant delays.
For the Ethereum blockchain, we investigate how durable
transaction inclusion in the chain really is, and what the impact
of the user-defined variables ‘gas price’ and ‘gas limit’ is on
transaction inclusion. We also investigate the effect of the so-
called ‘block gas limit’. Because we find that transactions can
remain uncommitted and even ‘stuck’ in the transaction pool, we
identify the need for a mechanism to abort transactions. As the
current blockchain designs do not feature such a mechanism, we
carry out experiments to simulate the same effect and determine
under which conditions transactions can be aborted.

The remainder of this paper starts with an overview of
blockchain background in Section II. The issue of transaction
commit time is discussed in Section III for Bitcoin and in
Section IV for Ethereum. The impact of network-defined
parameters is analysed in Section V. Then, the problem
of missing abort mechanisms for transactions is analysed
and mechanisms to simulate transaction abort are explored
in Section VI. We present related work in Section VII and
conclude in Section VIIIL.

II. BACKGROUND

Blockchains have risen to prominence in recent years with
the introduction of cryptocurrencies. Bitcoin and Ethereum are
the two first blockchain in terms of market capitalization. As a
technology, however, they support a wider range of use cases. A
blockchain system can be thought of as an append-only, public
ledger that keeps track of transactions made by participants. In
most cases, these transactions relate to some (virtual) asset, and
often involve moving quantities of the asset from one account
to another.

Every participant in the blockchain system holds a local
copy of the ledger and runs a network client that relays
transactions to the entire network. The client can also inject
new transactions into the network.

Transactions are signed using asymmetric cryptography:
only the owner of a given private key can create and sign her
transactions, but all participants can verify who signed a certain
transaction using the corresponding public key. A Public key
doubles as an address that belongs to the owner; it is freely
propagated as transaction origins and destinations. However, an
address is just a bitstring and does not typically reveal the true
identity of the actual owner. In this sense, an address functions
as a pseudonym. In general, a participant may also have any
number of addresses, which can be grouped by locally-running
software (the wallet) into accounts.

This design can ensure that all participants know what
amount of the asset is associated with which address if
an additional property holds: the public ledger is correctly
synchronised between the participants, i.e., all participants are
in consensus about which transactions have been successfully
made. A balance can then be computed for each address. If this
is not guaranteed, it is trivial to ‘double-spend’ a balance as
an attacker could strategically send his transaction to selected
participants only.

To achieve the necessary consensus, transactions are
grouped into blocks, which are cryptographically linked to
form a linked list, the blockchain. Hence, consensus must
be achieved on the content and order of the blocks. This is
achieved by a blockchain’s mechanism of block creation, which
is commonly called mining or solving a block. The oldest and
the most widely used form of mining is proof-of-work. Other
forms (e.g., proof-of-stake) exist, but are not investigated in
this paper.

The proof-of-work mechanism used in consensus protocols
works as follows. A miner (participant who wishes to create a
block) groups transactions into a block, adds a random number
of her choosing, and computes a hash sum over this block. For a
block to be accepted by the network, this hash sum is interpreted
as an integer, which must be smaller than a certain target value.
The target value depends only on the previous block’s hash sum
and deterministic factors; it can be computed independently by
each participant. The challenge for the miner is to find a random
number that will yield a hash sum with the desired properties.
The hash functions that are used in blockchain systems are
cryptographically secure hash functions. Hence, there is no
known better way of finding a target value than brute-force
search. Consequently, with the target values ever decreasing,
miners must invest more computational power. Once a miner
finds such a target value, it is allowed to award itself a certain
amount of the asset for having invested computational resources
(the exact amount is deterministic and often a function of the
length of the blockchain). This is also included in the block
as a transaction and acts as an incentive to participate. The
miner then signs the block and propagates it to the network,
which may accept it and consider it as the latest state of the
blockchain. In addition to the block reward, participants can
add additional incentive for miners by adding a self-chosen
transaction fee that miners who include the transaction in a
mined block are allowed to claim.

Although it is very unlikely, two miners may occasionally
find a new block at the same time and propagate it. This is called
a fork, which means the blockchain is not in consensus and
participants must wait for the next block (which chooses one of
the two candidates as its predecessor) to re-establish consensus.
The key strategy (Nakamoto consensus [1]) to resolve the fork
is that every miner will always work from the currently longest
chain. By a statistical argument, one can show that the more
blocks that have been found since the inclusion of a transaction
in a block, the less likely a new fork which produces an even
longer blockchain that is accepted by the network will happen.
For Bitcoin, the commonly agreed value is to wait for 6 blocks;
for Ethereum it is 12. The appropriate number of confirmation
blocks for a particular application depends on the value of the
transactions, the cost (computational power) of mining blocks,
and threat of hostile attack. Sufficient confirmations mean
that it is sufficiently difficult for an attacker to mount enough
computational power to find a longer sequence of blocks to
replace the current consensus (and hence tamper with it). The
well-known ‘51% attack’ is possible when controlling strictly
more than 50% of the network’s combined computational
resources, but more recent research has described strategies
that work with less [6].

In a blockchain system with a large number of participants,
the computational power required to solve a block first is nor-



mally out of reach for single participants, even with dedicated
hardware. A common way to participate in a blockchain is to
join a mining pool, where block creation is distributed over
many individual participants. Any block reward is shared by
participants. These mining pools were possibly not foreseen by
Bitcoin’s inventor. In fact, some attack strategies leverage the
mining power that they consolidate, threatening dependability
(especially integrity and availability).

Modern blockchains such as Ethereum provide remarkable
new features, such as so-called smart contracts. These are
programs stored on the chain and run by all participants. A
pricing mechanism (‘gas price’) also allows contract authors to
offer different prices for the execution of a contract. We return
to this in Section IV.

III. COMMIT OF BITCOIN TRANSACTIONS

In this section, we explore the impact that affects Bitcoin
commit-time and show that re-ordering of transactions play an
active role.

A peculiarity of Bitcoin is the way transactions are linked:
they transfer currency from a number of source addresses to a
number of destination addresses. Transaction outputs become
the inputs of new transactions. If the sum of the outputs is less
than the sum of the inputs, this is interpreted as an additional
output that pays a fee to the miner who mines the block

containing this transaction. This acts as an incentive for miners.

As a result, miners tend to optimize block creation by preferring
transactions with higher fees. The transaction fee is often the
only variable that client software asks Bitcoin users to choose
consciously when creating a new transaction.

However, transactions can also experience delay due to
other factors. An important one is that transactions must arrive
(roughly) in-order, for a node (and the network) to be able to
process them fast. Incoming transactions are handled by the
so-called mempool. If the referenced input transactions (the
‘parents’) are yet unknown, a miner will delay the inclusion
of the new transaction—it is then a so-called orphan. Miners
may choose to keep orphans in the mempool while waiting for
the parent transactions to arrive, but they may also expunge
orphans after a time-out they choose. A second factor that
could come into play, albeit one that only experienced users
will set, are so-called locktimes: a transaction can contain a
parameter declaring it invalid until the block with a certain
sequence number has been mined. This makes it possible to
set an ‘execution date’ for transactions.

Note that out-of-order arrival may be the result of a number
of factors: the forwarding behaviour of a node depends on the
implementation and is different even between versions of the
‘official’ Bitcoin Core client. It may naturally also depend on
the load on miners (leading to low throughput as evidenced
by an ongoing community discussion®). Transient connectivity

issues and Internet routing constellations may also be at play®.

Also note that transactions may be rejected by the mempool
for certain reasons. We explain these below as we encounter
them.

3https://en.bitcoin.it/wiki/B10ck7sizeflimitfcontroversy

4This is why projects such as Fibre (http:/bitcoinfibre.org/public-network.

html aim to provide high-speed links between certain locations.

Experiment 1 Experiment 2

2016-11-29 20:25 UTC
2016-11-30 21:36 UTC

2017-04-13 13:11 UTC
2017-04-14 14:15 UTC

Start collection of TX
End collection of TX

No. of preceding block 441,177 441,476
No. of first block 24hrs after
end of TX collection 461,721 462,003

Table I: Overview of experiment runs (TX: transaction)

A. Data Collection Methodology

We modified the bt cd implementation of Bitcoin, which
is fully compliant with Bitcoin’s standard inclusion tests>,
and changed the mempool to log every incoming transaction
together with the result of the applied checks. We collected
incoming Bitcoin transactions and determined the time it took
for them to be committed in the blockchain. We ran our
experiment twice to allow for varying network conditions and
growth of the network. Each experiment lasted ca. 25 hours;
the first was conducted in November 2016, the second in April
2017. Table I provides the details. It should be noted that
websites like https://blockchain.info/unconfirmed-transactions
reported high network load while the second experiment was
being carried out, with 25,000-30,000 transactions waiting for
inclusion. Checks by the mempool yield results that fall into
three categories. The first category are transactions that pass all
tests (‘straight-accept’). The second are rejected transactions.
The third category are the ‘orphaned’ transactions, which
reference the output of transactions that have themselves not
been received yet, i.e., a case of out-of-order arrival.

Our timing measurements are precise to the second. We
removed all duplicate log entries, i.e., a duplicate transaction
result having arrived, and receiving the same result from the
mempool checks. We only kept the earliest such transaction
that had arrived. For example, if an orphan transaction arrives
a second time while the parents have not arrived yet, this
transaction would be filtered out (it has no effect on commit
time). If the transaction arrives again, however, and is no orphan
anymore because our node has also learned about the input
transactions in the meantime, this is logged as a separate event.
Concerning transactions being included in the blockchain, we
defined an observation window from the first block preceding
our transaction collection to the first block 24 hours after the
end of our collection period. We counted which transactions
were committed during this window (i.e., inclusion in one block
plus five subsequent blocks in the chain).

B. Inclusion Time of Bitcoin Transactions

We collected roughly 300,000 transactions in each exper-
iment. Table II summarizes the associated statuses in the
mempool. The two experiments show remarkably similar
numbers for the total number of collected transactions, but
the fraction of orphans in the second experiment was higher
at 2.74% of the total number of transactions (0.87% in
experiment 1).

There is also a striking difference in the number of
transactions that were rejected because they had already been
received (‘already in mempool’). It seems plausible that the
reported ‘backlog’ was causing additional forwarding and

Shttps://github.com/btcsuite/bted
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Status Experiment 1  Experiment 2

Total collected TX 370,858 372,500
Straight accept 307,764 265,958
Orphan 2675 7274
(Reject: already in mempool) 55,706 90,695
(Reject: double-spend in mempool) 1339 296
(Reject: other) 2094 1882

Table II: Overview of collected transactions and status at
arrival. Note that orphaned transactions may arrive a second
time and get assigned a different status; hence the numbers in

the table do not add up to the total number of collected

transactions. We also group rarer rejections.

queuing on our node as well. The other reasons for rejection
were much less frequent. We observed some attempts to double-
spend a coin (i.e., the same, unspent outputs were used as input
in two different transactions)®. The other reasons are more
arcane and grouped together in our table (e.g., wrong format,
failing certain sanity checks, etc.).

We summarize the commit times we determined in Table III.
Note that they are significantly higher and more varied in the
second experiment. Fig. 2 plots the commit times for the two
forms of transactions that are our primary interest. The blue
curves refer to transactions that were a ‘straight-accept’, i.e., the
parent transactions were known and the incoming transaction
passed all mempool tests. The violet curves are the transactions
that were orphans upon arrival.

In both experiments, orphans seem to be committed later
than transactions that were directly accepted. However, the
additional delay is much higher in the second experiment (where
the network was under high load). In our first experiment, about
60% of orphans were included within the same time span as
normal transactions. In fact, 31% of orphans took longer than
2 hours to be included, 21% longer than 3 hours, and 8% took
longer than 5 hours. For directly accepted transactions, these
values were slightly different: 17% of them took longer than
2 hours, 9.5% longer than 3, and 5% longer than 5 hours. In
our second experiment, roughly 40% of orphans had similar
commit times as directly accepted transactions. The majority
experienced very significant delays: the median was almost
20% higher, and the third quantile is more than 2.5 times as
high as that for straight-accepts. We also note that only 1.2% of
orphans and 1.6% of directly accepted transactions had not been
included by the end of our observation period in experiment
1. In experiment 2, more than 20% of orphans had not been
included (but almost all straight-accept transactions).

Factors other than the out-of-order arrival might still exercise
considerable influence on commit times. We hence decided to
investigate two further factors: transaction fees and locktimes.
We first determined the number of transactions with a zero fee.
This was always very low: for the straight-accepts, it was 74 and
12 in experiment 1 and 2, respectively. The orphans never had a
zero transaction fee. Fig. 3 shows a box plot of transactions fees
with the zero values filtered out. We can see that transaction
fees are considerably higher in the second experiment, but

Note that these are not necessarily malicious attempts—they could also be
attempts to abort a previous transaction. Instructions circulate on the Internet,
e.g., http://bitzuma.com/posts/how-to-clear-a-stuck-bitcoin-transaction/. We
explain how to abort an Ethereum transaction in Section VI).
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Figure 2: Time between reception of transaction and commit.
Note the logarithmic x-axis.

Type Min Q1 Median

Experiment 1:

Mean Q3 Max

Orphans 944 3096 4635 7582 8334 117,585
Accepts 676 2887 4234 5475 5901 150,123
Experiment 2:

Orphans 1293 4280 6337 34,912 51,352 174,516
Accepts 1165 3873 5364 18,417 19,286 171,566

Table III: Summary of commit time distributions (in sec) for
orphans and straight-accepts during our experiments.

there is no difference between straight-accepts and orphans
in experiment 1. In experiment 2, orphans even have slightly
higher fees. It is very unlikely that lower transaction fees are
a cause for delayed commit of orphans.

We extracted the locktimes for our collected transactions and
the locktimes of their parents. As our logger had not captured
the full content of transactions arriving in the mempool (but
only hash value and timestamp), we conducted this analysis
only for those transactions that had been incorporated into the
blockchain. The vast majority of transactions had no locktime
set: in experiment 1, only 15% of straight-accepts and 12%
of orphans had a value that was not zero. In experiment 2,
the numbers were 23% and 17%, respectively. While this
may signal an increase in the use of the feature, orphans
never had locktimes beyond the observation window. Orphans
in experiment 1 had locktimes that ended at least 3 hours
before the end of the observation window; in experiment 2 it
was six hours. In contrast, straight-accepts did have locktimes
that extended considerably beyond the end of the observation
window. In experiment 1 and 2, nearly 100% of transactions also
had locktimes similarly near the end of the observation window.
However, we found some decidedly optimistic locktimes on
the order of 1.5-1.7 billion (block sequence number). With 10
minutes being the average time between two Bitcoin blocks,
these transactions cannot be included before the year 30.166.
The obvious limitation of our work here is that we do not
know the locktimes of those orphans that were not included
in the blockchain by the end of our observation period. Given
the above results, however, we still feel confident to say that
locktimes are not likely to be a decisive factor in commit delay
of orphans.

Naturally, there may still be confounding factors in our study
that we could not control for in this experiment. For example,
we do not have information about node connectivity outside of
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Figure 3: Box plot of transaction fees by transaction category.
Note the logarithmic y-axis.

our observation post, Australia, and could not determine the
(ever changing) Internet routing constellation that the Bitcoin
network is exposed to. Note that propagation times in the
Bitcoin network have been investigated before [7]. Our study
suggests that it is worthwhile to revisit this topic.

IV. CoMMIT OF ETHEREUM TRANSACTIONS

In this section, we first explain why Ethereum transactions
are not guaranteed to be committed regardless of their validity,
we then identify gas price, gas limit, and the network as factors
that affect commit time.

A. Ethereum Transaction Handling

We first give an overview of Ethereum’s interesting trans-
action handling. Fig. 4 captures the life cycle of individual
transactions in the Ethereum blockchain. It starts with the
submission of a transaction into the (virtual distributed)
transaction pool across all miners. A transaction lifespan can
be split into consecutive phases: (i) the announcement of the
transaction in the system; (ii) the inclusion of the transaction
in a newly mined block on some branch of the chain; (iii) the
inclusion of the transaction in a block part of the main chain;
and (iv) the commit of the transaction after sufficiently many
blocks are subsequently mined.

There is no certainty whether a particular transaction will
eventually be committed or whether it will be outdated, in that
it will be considered an invalid transaction forever. Moreover,
it is impossible to know whether a transaction that is invalid
in some state of the system will never be valid in a later state.
More specifically, the aforementioned step (ii) is not sufficient
to guarantee that a transaction 7'x is permanently added to the
blockchain: if the blockchain forks, then the block comprising
the transaction may simply be discarded, in which case it could
be re-included later.

When a transaction is included in a block, it has been
validated beforehand, i.e., its digital signature has been checked,
as well as the validity of parameters like the nonce (sequence
number of transactions relative to a given source account),
and that there are sufficient funds in the source account. If all
blocks that included the transaction become part of a shorter
chain than the main chain—they become so-called uncles in
Ethereum terminology—then the transaction goes back into

submitted H validated & included H 11 subsequent blocks @
all blocks containing Tx
' part of shorter chain

superseded
Tx dropped Tx outdated

Figure 4: State machine for an individual transaction

the transaction pool. This may happen more than once and,
theoretically, there is no upper limit. While the transaction is
in the pool, it may also be dropped. This is a local decision
of miners, and it is impossible for any node in the network to
know with certainty that all miners have dropped the transaction.
Only when the nonce of the transaction becomes outdated, i.e.,
another transaction from the same source account with the
same nonce got committed, can a node be certain that the
transaction is invalid and will not be included in any valid
block. Otherwise the transaction may resurface at a later point,
and get included in the chain.

To determine with high probability that a transaction is
permanently included in the blockchain, one has first to wait
for several blocks to be mined after the first inclusion and refer
to the block including the transaction of interest as an ancestor.
Each of these subsequent blocks are called confirmations
and when sufficiently many confirmations occurred after the
transaction block inclusion, then the transaction is considered
committed, i.e., believed to remain in the blockchain forever
with very high probability. The current version of Ethereum
requires 11 blocks after the transaction inclusion for the
transaction to be committed, but other values may be required
by other versions [8].

B. Data Collection and Basic Statistics

We wrote an observation node for the Ethereum blockchain
by modifying a client node to listen to the network and collect
all transactions and block announcements. Our local client
is based on the Ethereum implementation geth in version
1.5.3. We set the minimum gas price to 0 and otherwise use
the default settings. One important change we made was to
allow our client to connect to a maximum of 500 nodes instead
of the default 25. This allowed it to collect a maximum of
transactions—in general, it was communicating with more than
400 nodes at any time.

We modified the geth client such that all transaction
announcements were intercepted before any verifications take
place in order to prevent interesting transactions from being
discarded. For each announced transaction, we recorded the
local time of observation as transactions do not contain a
timestamp. Similarly, for all incoming blocks we recorded the
timestamp upon arrival. Although each block in Ethereum has
a timestamp, the timestamp refers to the time where the mining
of this block started and not the time when the block was
generated. Moreover, the clocks of miners may not be perfectly
synchronized.

We collected data over a 3.5 month period. There were
some outages in our collection, due to network disconnection
and unforeseen software issues. We identified these using the



Commit delay (seconds)

Time interval # Txs announced ~ Median 95" percentile
8-13 Jan 2017 220k 195 323
5-10 Feb 2017 234k 192 301
5-10 Mar 2017 281k 195 307
2-7 Apr 2017 433k 199 339

Table IV: Observation intervals for longitudinal comparison

median block time per hour: if the median for a given hour
my, deviated from the overall median over the entire data set
m, by more than one standard deviation o, we treated that
hour as an outlier—(i.e., my > m,+ o or my, < m, — o). For
such outlier periods, we disregarded the directly affected hours
as well as one hour prior and subsequent to these hours.

The resulting filtered dataset spans a total duration of 97.38
days, during which we observed 621,865 blocks, including
uncle blocks. Those blocks contained 6,152,030 transactions,
out of which 5,696,471 were unique. 455,559 transaction in
the blocks (7.4%) were duplicates. The number of unique
transactions that were announced to our observation node during
the experiment was 5,885,603. Interestingly, this was not a
superset of the transactions included in blocks: we did not
register an announcement for 24,765 of the unique, included
transactions. Moreover, for 21,330 transactions, we received
the blocks containing them prior to the announcement message
for the transactions. We did not consider such transaction
announcements in any of the analyses in this paper. Out of the
621,865 blocks, 34,044 were later referenced as uncle blocks
on the main chain and 1731 were ‘unrecognized’ uncle blocks
(not referenced as uncles on the main chain). In addition, we
observed 99 forked chains of length 2, and a single forked
chain of length 3. For a longitudinal comparison, we extracted
4 time intervals of 5 days each, for which we had consecutive
uninterrupted data. Table IV lists the details. The interval start
dates differ by 4 weeks exactly, and all times are midnight
UTC.

C. From First Inclusion to Commit

As Ethereum’s transaction handling and inter-block time
differ significantly from Bitcoin, there is always a chance of a
chain fork. Ethereum recommends to wait for 11 confirmations
after block inclusion before assuming that a transaction is
committed permanently with high probability. At the time a
fork occurs, there is usually no certainty as to which branch
will be permanently kept in the blockchain and which branches
will be discarded. In particular, transactions that were only

included in uncles need to go back to the transaction pool.

Before investigating the factors that cause commit delays, it is
therefore an interesting question how fast transactions proceed
from first inclusion to commit, and how many transactions that
were already included in one block actually do get lost as a
result of a different branch becoming the main branch. If this
fraction is extremely small, this may allow the development of
applications that are tolerant to rare transaction losses while
profiting from having to wait for fewer confirmation blocks.

Fig. 5 depicts the distribution of the time it takes for an
Ethereum transaction to be included in a block and a number

of subsequent confirmation blocks. We measured as follows.

When our observation node received the announcement of a
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Figure 5: Time (sec) for first inclusion and commit (12 or 36
confirmations), as well as second and third inclusion of
transactions that were previously not included in main chain.

block Bj, we analysed the transactions that are included in that
block to determine which of the so far announced transactions
were included. If a transaction Tz; was previously announced
and was now included, we took the difference between the
timestamps recorded for the announcement of 7Tz; and for
Bj as the delay for the first inclusion. In case B; became an
uncle, all the transactions in B; would need to be included
in the subsequent blocks. When Tz; was included in some
subsequent block, say By, we used the timestamp of By to
calculate the delay of the second inclusion, third inclusion
etc. Deeper forks of the chains were treated analogously. The
confirmation delay with 12 and 36 blocks for Tz; was then
calculated from the last block in which T'z; was included.

As shown in Fig. 5, the inclusion times tend to follow similar
curves. However, compare the slopes of the curves for first
to third inclusion to the slopes for twelfth and 36th inclusion:
the latter are less steep, indicating the growing fraction of
transactions that have to wait longer for a ‘commit’. For a ‘12-
block commit’, the median waiting time is around 200 seconds,
and even the third quantile is not much higher. But the more
blocks we require for a commit (say, 24 or 36 blocks), the more
likely it becomes that a transaction needs (even considerably)
longer than the median would suggest.

Concerning transactions that become ‘unincluded’, however,
we find that these are rare indeed. We observed that 113,122
first transaction inclusions (0.021%) were not permanent; and
the same is true for 2602 second inclusions (0.0005%), and 41
of the third inclusions (0.000007%).

D. Impact of User-defined Gas Price and Limit

Ethereum has two user-defined parameters around the
concept of gas, namely the gas price and the maximum gas
offered for including a given transaction. We proceeded to
investigate how these affect the commit times. In particular, we
were interested to see if it is possible to speed up the commit
time by offering particularly high rewards for miners and, e.g.,
setting a high gas price.

Based on our collected data, we analysed the effect
of the user-defined gas price on the time it took for the
transaction to be committed. The CDFs in Fig. 6 depict
this relation for five bands of gas price (all in Gwei’):
[0, 0], (0,20), [20,25), [25, 105), [105, +00). We chose these
five bands for the following reasons. O by itself is a special
case. The default gas price is 20 Gwei, and the market rate in
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Figure 6: Commit delay (sec) for transactions based on gas
price. Note logarithmic z axis.

the observation period was typically between 22 and 24 Gwei®,
so the interval [20,25) captures 85.57% of all transactions. A
cohort of transactions offered around 100 Gwei, and to include
these, the next interval was set to [25,105) Gwei. The final
interval covers all remaining gas prices.

As shown in the graph, the higher the gas price in a given
band, the less likely we observed long delays. However, we did
not observe any meaningful differences from 25 Gwei onwards.
Finally, there is a sharp contrast between the 0-band and all
other bands: the O-band has significantly longer commit times.

A second user-defined variable around transaction fees is
maximum gas, i.e., how much gas execution of the transaction
may cost. We analysed its impact on commit delay. While we
discovered individual transactions that were delayed due to an
exceedingly high gas limit, our analysis was inconclusive: we
could not find a strong correlation in any direction between
maximum gas and commit delay. This remains an open question
for now and warrants longer observation.

E. Impact of network delays

We were also curious whether the Ethereum network
suffered from transaction reordering as we had observed it
for Bitcoin. Ethereum does not link transactions in the way
Bitcoin does, but every transaction has a sequence number
(‘nonce’) which is different for each sender’s account. This
sequence numbers starts from O and increments by 1 for each
transaction sent from the same account. It is intended to provide
an assurance that transactions from the same account will
be executed in a particular deterministic order. However, it
also means that a transaction with a nonce n + 1 cannot be
included into the blockchain unless there is an already included
transaction with nonce n—it is ‘orphaned’. The transaction
with the higher nonce will wait in the transaction pool until
the arrival of a transaction with n as nonce.

We hence carried out an experiment that is similar in nature
to our previous Bitcoin experiment. We analysed the commit
times for in-order and out-of-order arrival of transactions during
the same interval as for our second Bitcoin experiment: 2017-
04-13 13:11 UTC-2017-04-14 14:15 UTC. The total number of
transaction announcements, which were also committed during
this period, was 87,384. The number of transactions with out-
of-order nonces was 5403 (6.18%). The commit time for both
categories is shown in Fig. 7. The graph suggests that the
commit delay for out-of-order transactions is almost doubled,
compared to in-order transactions. To exclude the gas price
as a confounding factor, we plot the gas price distribution for
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Figure 7: Commit delay (sec) for transactions based on
ordering. Note logarithmic x axis.

100% —
90% | T
80% —
70% —
60% - |
50% —
30% | ] out-of-order
20% |
10% - |
% — —
0% T T T T
20 100 500 1000

Figure 8: Gas price distribution (GWei) for transactions based
on ordering. Note logarithmic z axis.

both categories, shown in Fig. 8. We did not find a significant
difference in gas prices between two categories.

As with Bitcoin, it is hard to rule out other confounding
factors that we cannot control for, e.g., Internet routing or
overall network connectivity. However, our data allowed us
some partial insight into the latter. We inspected transactions
with nonce n that were announced after transactions with
nonce n + 1, and compared this with in-order transactions
announcements. Fig. 9 plots the distribution of unique Ethereum
nodes that we saw broadcasting the transaction before inclusion
in the block. We find that delayed transactions were known
to much fewer nodes. While not conclusive, this provides
first indications that network connectivity may have negatively
impacted transaction propagation.

V. IMPACT OF THE BLOCK GAS LIMIT IN ETHEREUM

Ethereum has a second form of limit, the so-called gas limit
per block. Unlike the gas price in a transaction, it is defined by
the network of miners and applies to the sum of gas consumed
by all transactions in a block. If the limit is lower than the gas
required for a given transaction, the transaction cannot possibly
be included. The development of the gas limit over time is

readily available, e.g., on Etherscan’.

The rationale for the limit is to prevent Denial-of-Service
(DoS) attacks on the network by limiting the amount of
computation that can be done per bloc. Due to several DDoS
attacks to the network, a majority of miners on Ethereum
agreed to lower the limit to approx. 500,000 gas temporarily
— from 15th to 17th of October 2016 according to Etherscan.
The network still kept a low limit prior to and after these three
days: from 23rd of September 2016 to 22nd of November
2016, with one day exception, the limit was around 2M gas.
Around 5 December, it returned to 4M gas. This limitation
can negatively impact the inclusion of transactions containing

8https://etherscan.io/chart/gasprice — last accessed 13-04-2017

9https://etherscan.io/chart/gaslimit
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Figure 9: Number of in-order and out-of-order arriving
transactions from different peers.
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Figure 10: Distribution of gas usage for different types of
transactions, prior to DDoS attacks. Dotted vertical lines show
limits in response to the attacks.

contracts with much gas. This is not a hypothetical case: in
earlier work, we deployed contracts using around 1.5M gas
ourselves [3]. However, simple transfer of assets should not be
negatively impacted.

We hence chose to investigate whether we could find
evidence for this hypothesis in our data. We analysed all
transactions that happened before the DoS attacks and used
block 2,303,121 as the pre-DoS cut-off block. We considered
the amount of gas used for three different types of transactions:
financial transfers, regular function calls to contracts, and
contract creation.

Figure 10 shows the distribution of gas used for these
transaction types. It highlights the gas limits mentioned above
as vertical lines. No financial transfer transaction used more
than 100,000 gas. This was an expected finding, as a financial
transfer will incur 21,000 gas as base cost for any transaction,
plus possibly a small amount for attached data: between 4 and
68 gas per byte (used e.g., for a description of the transfer,
see [9]. As for function call transactions, 94% of them used at
most 200,000 gas. Only 0.62% of the remaining function call
transactions would not have been possible with the 500,000 gas
limit. This contradicted a part of our hypothesis and highlighted
that most of the functions that are currently in use are not
computationally intensive.

However, when inspecting contract creation, we found that
only 53.79% of all the contracts created before the DDoS attack
could have been created with the 500,000 gas limit, while
46.21% required more gas. This confirmed our hypothesis that
many contracts would not have been deployable while the block
gas limit was in place. Even for the 2-month period where
the network kept the block gas limit at about 2M, 18.78% of
contract creation transactions would have been impossible.

VI. TRANSACTION ABORT IN ETHEREUM

In this section, we propose a mechanism to artificially abort
Ethereum transaction by superseding them with an idempotent
or counteracting transaction. This abort mechanism can be
useful if, for instance, the system observes that the transaction
has not been committed within a specified time frame (as can
be the case with, e.g., orphans). As such, the abort mechanism
could be implemented to increase the user-friendliness of
software clients or wallets.

There are some options to achieve an effect that is similar
to an explicit abort. In Ethereum, for instance, the system or
user can issue a competing transaction from the same source
account, i.e., another transaction with the same nonce. Assume
user Alice transfers 1 Ether to Bob by issuing transaction 7T'z;
with nonce 7. After an acceptable time frame, e.g., 10 minutes,
has elapsed and T'z; has not been committed, Alice wants to
abort Tz;. She then submits a new transaction Tzé with the
same nonce ¢ as specified in Tz; and a higher transaction fee
in order to increase the chances for Tz) to be included. For
this transaction Txé, she does not want to spend more Ether
than necessary; thus, she sets the transaction value to 0, and
her own account as receiver. Once Tz is committed, Tz; is
superseded by it and becomes outdated. If, in the meantime,
Tx; were to succeed, ng becomes outdated. This is acceptable,
since that was the original intent.

Alternatively to aborting, Alice can ‘retry’ Tz; by submit-
ting Tz} as follows: the fields in 7% contain the same data
as in Tz;, including nonce i—except Alice offers a higher fee
for it. Therefore, the hash and digital signature of 7%, will
be different from 7Tx;, and thus it will be perceived by the
miners as a separate transaction. If Alice tried resending T'z;
without any changes, hash and signature would be the same and
the miners would not consider it any differently—unless they
have previously dropped Tz;. In the latter case, the reasons
for dropping Tz; might not have changed, and thus the same
would likely happen again. If either Tz; or T%, succeeds, the
respective other transaction would become outdated and invalid,
since they both have the same nonce .

Experiment: Abort Transaction in Ethereum. We tested the
above method for abort on the public Ethereum blockchain for
three scenarios: 1) a transaction does not get included in the
usual period of time; 2) a client changes its mind and decides
to roll-back the issued transaction; and 3) a transaction is in
indefinite pending state due to insufficient funds. We describe
these below in more detail. For all three scenarios, we developed
JavaScript implementations with respective parameter settings
and timeouts, which we ran on nodejs v4.2.6, using the web3
library v0.17.0-alpha to interact with the geth v1.5.4-stable
client. The geth client runs a full blockchain node with mining
disabled and interacts with the public network by sending
and receiving transactions and newly mined blocks. It only
broadcasts newly mined blocks to the rest of the network. We
used 0xd8c96ee029945fe1b4272035b704dc52ebedf051 as the
sender account address for all three scenarios, and the results
of included transactions can be publicly observed, e.g., on
Etherscan'.

Abort Experiment 1: In order to test the situation where a
sent transaction does not get included in the usual timeframe,

10https://etherscan.io/address/0xd8c96ee029945fe 1b4272035b704dc52ebedf05 1
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Figure 11: Underbidding market fee and automatic abort after
10 minutes if the original Tx was not included
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Figure 12: Underbidding market fee and automatic abort after
3 minutes if the original Tx was not included

we submitted 100 transactions that underbid the market rate.
Specifically, we assumed the average gas price from the
previous day (1/12/2016) as market rate (mr), and submitted
10 transactions each for different prices, which are 0, 0.1 x mr,
0.2xmr, ..., 0.9 xmr. As cut-off time, we rounded up the 99%
percentile from our earlier experiment (cf. Fig. 1) to 10 minutes.
If the transaction had not been included then, we submitted an
abort transaction 1z .;,,+ as described above, with the same
nonce but at full market rate mr, target 0x0, and value of 0.

The results are shown in Fig. 11. Surprisingly, most
transactions were accepted by the network. 6 out of 10
transactions with either O or 0.2 x mr were accepted. In addition,

only 2 out of 10 transactions with 0.1 x mr were accepted.

All of the 16 timed-out transactions were successfully aborted
with our T%4p0r+ mechanism described above.

Abort Experiment 2: for this experiment, we assumed a
client that underbids the market fee and changes its mind
regarding an issued transaction. As in the previous experiment,
we sent 100 transactions with gas prices 0, 0.1 x mr, 0.2 x mr,
..y 0.9 x mr for 10 transactions each. Rather than waiting for
10 minutes, we set the timeout value to the target median for
Ethereum transaction commit, i.e., 3 minutes.

The results of this experiment are shown in Fig. 12. A
much higher percentage of transactions were not included
in a block after 3 minutes, in comparison to Fig. 11 with

10 minutes timeout. As before, 100% of Tx,p.r+ succeeded.

Interestingly, all of them were included in a block after 3
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Figure 13: Abort duration histogram, from experiment 3

minutes. In two out of the 100 cases, the 3-minute timeout
for the original transaction was reached, Tzqp.-+ Was sent,
but the original transaction Tz,,;, still won the race and got
included and committed in the blockchain. Thereby, Tz gport
was outdated. As stated above, this is a possibility that clients
should be prepared for. The reasons for such a situation include
(i) processing time in our client when preparing the TZgport;
(i) broadcast delays or other network effects where the winning
miner does not receive TZ,por¢ before including Tz ,yi4; or
(iii) non-rational scheduling of transactions in the pool, where
no preference is given to the transaction with the higher fee.

Abort Experiment 3: in this last experiment we submitted
two transactions, creating a situation that corresponds to faulty
inputs from a user (or user’s program). We have observed such
behaviour during our live observation of public Ethereum. To
replicate it, we submitted two transactions, Tz and Tzo, as
follows. Assume that the last nonce for the sender address was
n and its account balance k. Then we create Tz, with nonce
n + 1 and value ﬁk and Tzo with nonce n + 2 and value
%k. For both transactions, we set the gas price to 0.7 X mr.
Due to the nonce, Tz1 must be included before Tz,. However,
due to the positive gas price, the account balance resulting
from the inclusion of Tx(l) is insufficient for Tz,. Finally,
we submit Tzo, wait 5 seconds, and then submit 7z;. This
gives Tz the chance to get broadcast before Tz; is known to
any node, including our own. This procedure is needed so that
the client submits 7zo to the network; since geth is not aware
of Tz, and its contents when we submit Tz, it broadcasts
Tzo. Otherwise, it might detect the insufficient balance and not
accept Tzo.

Once Ty has been included in a block, Tzs is invalid
due to insufficient funds. However, this does not always get
checked, and hence Tz, may remain in the transaction pool for
a long time. In fact, if another transaction deposited funds into
the sender account, Tzo would become valid and be executed.
This, again, is behaviour that we observed. Here, we send a
Tx apor+ With the nonce n + 2, to abort Tzs.

We ran this experiment until we had submitted 7% qp0rt
100 times. All 100 submitted Tx,p.-+ Were successful. We
measured the time it took for 7z ,p0,+ to be included in a block
(first inclusion), and plotted that as shown in Fig. 13. The
median for those times is 45 sec, and the maximum 230 sec.

VII. RELATED WORK

The dependability of blockchain systems have been in-
vestigated on various aspects. However, most investigations
were published as blog posts, in many cases without a sound



description of the methodology. Vitalik Buterin, the creator of
Ethereum, wrote a post!! where he related the block time, i.e.,
the expected interval time between blocks, to security. This
post explains that to tolerate Byzantine faults, a faster block
time translates into a finer granularity that allows to converge
quicker than a longer block time. In a different post'?, he
wrote about the rate of uncle blocks in Ethereum. In contrast
to our experiments and analyses, this post is written from the
viewpoint of the network, whereas we focus on the impact of
network effects like uncles on individual transactions and the
resulting availability of blockchain-based systems.

When building a distributed system, one has to choose
between making it available or consistent. This is a direct
implication of the well-known CAP theorem, initially mentioned
by Brewer [10] and proved by Gilbert and Lynch [11]. The
CAP theorem states the impossibility for a distributed service
to provide (i) consistency: returning the right response to a
request; (ii) availability: returning a response to each request;
and (iii) partition-tolerance: supporting message delays and
losses.

Our observations that mainstream blockchains offer limited
availability is surprising, given that they usually do not
guarantee consistency. Other approaches would typically favour
consistency over availability [12], [13]. In contrast, Ethereum
transactions are not guaranteed to remain in the order they were
committed [8]. It appears that these blockchains typically try
to ensure consistency with some probabilities that depend on
environmental assumptions, such as the delays of message
and the mining power [14]. While recent results showed
experimentally that network delays could impact Ethereum
consistency [15], we are not aware of any in-depth evaluation
of its availability property.

In terms of peer-reviewed academic publications, several
works [16], [17] studied the possibility to increase the pace
at which blocks could be appended to the chain by benefiting
from a leader. An interesting improvement discussed by
Sompolinsky and Zohar [16] was the reduced expected interval
time between blocks from 10 minutes in Bitcoin to 12-15
seconds in Ethereum, by accounting for “uncle blocks” rather
than considering only the longest branch of the chain. Eyal
et al. [17] proposed to reduce the expected interval time
between blocks by electing a leader that can append micro-
blocks frequently. This does not necessarily reduce the delay of
reaching consensus, as nodes that require high confidence will
not necessarily reach consensus faster than with Bitcoin [1].

The commit-time of Ethereum transactions was explored
previously [8]. It was shown that the time a transaction takes to
commit is proportional to the difficulty of the crypto-puzzles of
the system. However, this study experiments only in a private
chain context, where the difficulty is significantly lower than
in the Ethereum public chain. This explains why the commit-
times reported in [8] differs substantially from our public chain
observations.

https://blog.ethereum.org/2015/09/14/on-slow-and-fast-block-times/ — last
accessed 5/12/2016

2https://blog.ethereum.org/2016/10/3 1/uncle-rate-transaction-fee-analysis/ —
last accessed 5/12/2016

VIII. CONCLUSIONS

We provided a first, detailed analysis of issues that can
negatively impact commit times in permissionless proof-of-
work blockchains, and a way to limit this effect with the
introduction of an explicit abort mechanism.

In particular, we warn application developers against the
factors that may dramatically affect their quality of service. We
found that network reordering can impact dramatically commit
times and even counterbalance the effects of transaction fees
and gas price. Furthermore, we could also show that measures
taken by the Ethereum community to counter DoS attacks had
a strong availability impact on contract creation.

For the future, we plan to study how availability issues can
impact the execution of smart contracts as these are becoming
more important in the Ethereum blockchain.
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