
Securing a Deployment Pipeline
Len Bass∗, Ralph Holz∗, Paul Rimba∗†, An Binh Tran∗, Liming Zhu∗†

∗Software Systems Research Group, NICTA
†School of Computer Science and Engineering, UNSW

Sydney, Australia
Email: {firstName.lastName} @nicta.com.au

Abstract—At the RELENG 2014 Q&A, the question was asked,
“What is your greatest concern?” and the response was “someone
subverting our deployment pipeline”. That is the motivation for
this paper. We explore what it means to subvert a pipeline and
provide several different scenarios of subversion. We then focus
on the issue of securing a pipeline. As a result, we provide an
engineering process that is based on having trusted components
mediate access to sensitive portions of the pipeline from other
components, which can remain untrusted. Applying our process
to a pipeline we constructed involving Chef, Jenkins, Docker,
Github, and AWS, we find that some aspects of our process
result in easy to make changes to the pipeline, whereas others
are more difficult. Consequently, we have developed a design that
hardens the pipeline, although it does not yet completely secure
it.

Keywords—supply chain, continuous deployment, DevOps

I. INTRODUCTION

Securing the supply chain for software has become a
matter of increasing concern [1], [2]. A deployment pipeline
constitutes the last portion of the supply chain for software.
A deployment pipeline retrieves portions of the final system
from a variety of sources, builds the application from those
inputs, packages and tests that build, and places the application
package on a number of physical or virtual machines. Any of
these stages can include vulnerabilities, e.g., retrieved portions
of the system may not be the desired ones; building, packaging
or deployment may have been corrupted.

Securing a pipeline is complicated by the wide variety of
tools involved in the pipeline, where each one comes with their
own security mechanisms. Our pipeline utilizes Chef, Jenkins,
Docker, Github, and AWS. Because of space and complexity
limitations, our examples focus on Jenkins. The points we
make, however, are applicable to all of the tools in our pipeline
and, indeed, to any deployment pipeline.

What we present is very much a work in progress, and
consequently we are presenting a snapshot of our status at this
point in time. Our contributions, at this point, are: a discussion
of what it means to “subvert a pipeline”, an engineering
process that could produce a trusted pipeline within certain
constraints, and an application of that process to a real world
pipeline that does not satisfy those constraints yet but that
results in a hardened although not entirely trusted pipeline.

II. SECURITY AND TRUST

We first discuss how a pipeline might be subverted. We
identify three distinct scenarios for subverting a deployment

pipeline. The first one is when the image that is deployed
is not a valid image. That is, the specification of the build
is incorrect, the build itself does not follow the specification,
or the image deployed is not the same image that was built.
The second one is when an image is deployed without going
through the complete pipeline. That is, an image is available
for consumer interaction without passing through the checks
inherent in the pipeline. The third one is when the production
environment is accessible from a different environment. That
is, machines in another environment (e.g., test, development)
have direct access to the production environment when they
should not. In this paper, we focus on the first scenario.

Our ultimate goal is to make our pipeline trustworthy. We
use this term in the sense that we have assurance our pipeline
is secure against attack and cannot be made to behave in a way
that is not the intended one (for the purpose of this paper, we
assume that, in the absence of attacks, the software adheres to
its specification). There are several ways of generating such
trustworthiness. These include security testing, static analysis,
and formal verification (including model checking). The level
of trustworthiness generated by these techniques varies, with
security testing being the lowest and formal verification being
the highest. Although formal verification provides the highest
level of trustworthiness, it is very costly. The current state of
the art of formal verification is up to about 5K lines of code.

In the context of our own pipeline, we start from the fact that
Jenkins has had several vulnerabilities in the past [3], noting
that a monolithic design means that a breach in any code part
means attackers can gain the privileges of the entire process
and thus directly gain control over other code parts, too. One of
our goals is thus to find mechanisms that will harden a pipeline
against attack. The result is a pipeline where the attack surface
of the code base is reduced, in the sense that many parts of
the code base have no access to other critical parts and thus
cannot subvert the pipeline even when breached.

III. THREAT MODEL

One question to consider when attempting to secure any
software system is how powerful the attacker is that we want
to defend against. This is not a straightforward question:
consider, e.g. that the security of the pipeline depends on host
security (a system’s security) as well as network security (the
security of the communication channels).

With the exception of our Deployer (defined later) and
the actual cloud running the image, we assume that all our



components run on a single machine. We consider
• A remote attacker attempting to exploit a component in

the build environment that is directly accessible from
outside of the environment. If successful, an attacker can
gain the privileges of the process. We do not consider
further privilege escalation (to administrative rights) –
this would trivially compromise all processes on the
machine.

• In the spirit of the authors of [4], a remote attacker
attempting to exploit a component indirectly and without
direct network access to the build environment. This can
be done by a seemingly benign and unnoticeable change
in a third-party repository, with code fetched from there
as part of the build process. The actual code is not
malicious itself for the third-party but does introduce an
exploit which can, as above, allow a compromise of the
entire process on the machine, with new privileges for
the attacker.

• Attacks on the network links on the public Internet,
i.e. on the connections between our machine, third-party
repositories, Deployer, storage, and cloud.

We do not investigate the direct security problems of fetch-
ing code from third-party repositories where it is not possible
to tell if the code has been tampered with by an attacker.
These constitute a class of challenging problems of their
own. One particular direction worth exploring are deterministic
builds, as they are currently being introduced in, e.g., the
Debian GNU/Linux distribution. We also explicitly exclude
one environment, which we cannot control: the cloud where
the image is deployed. Here, we assume this environment to
be trustworthy. Furthermore, we assume that the compiler is
correct.

IV. IDENTIFYING SECURITY REQUIREMENTS

A pipeline is defined by a number of steps, each of which
consists of a number of actions to be carried out. There is a
logical ordering on the steps and the actions. For simplicity,
we assume there are no branches in the pipeline, i.e. it can
be viewed as actions being carried out in sequence, and
actions are grouped logically into steps. Every action can be
described by a specification, and every action has a well-
defined outcome. Our goal is to harden the pipeline’s integrity,
which we understand here to mean three goals are achieved:

1) The order in which actions are executed cannot be
changed by anyone without the appropriate credentials.

2) Only someone with the appropriate credentials can
change an action such that it does not conform to the
activity described in its original specification.

3) The outcome of an action is exactly as described in the
(most recent) specification.

Note that this definition is concerned with integrity only. At
this stage, we disregard issues like leaking sensitive informa-
tion to an attacker – except if this leak leads to the attacker
obtaining such credentials that are necessary to violate one
of the goals above. In particular, this definition means that we

Fig. 1: Jenkins’ current activities in deploying an image

need to prevent any attacker from changing any of the code or
executables that are used to carry out an action. Furthermore,
our third goal implies that the specification of the actions must
be protected.

V. PROCESS OF SECURING THE PIPELINE

Scenario 1, as defined in Section II, is about the integrity
of the image that is created and deployed. In our originally
implemented pipeline, this is a responsibility of Jenkins.
Jenkins retrieves elements that go into the image, builds
them according to a specification, saves the created image,
tests the created image, and subsequently invokes a Deployer
and AWS to place the image into the desired environment
– either a testing or a production environment. We show
these activities in Figure 1. Although this pipeline is based
on Jenkins and deploys into AWS, the steps are generic and
must be performed by any Continuous Integration/Deployment
tool suite. We will use Figure 1 to exemplify both our process
and our hardening recommendations.

Our idealistic process for hardening the security of the
pipeline has the following steps:

1) Identify the security requirements for the pipeline.
2) Identify the trustworthy and untrustworthy components

of the pipeline.
3) Repeat until all of the requirements have been satisfied

OR can no longer decompose the untrustworthy compo-
nents

a) Model the interactions between the components
b) Analyze the model to check whether it satisfies its

requirements.
c) Decompose untrustworthy components causing an

unsatisfied requirement into a trustworthy and an
untrustworthy portion.

4) Implement new trustworthy components and modify
untrustworthy components to utilize the trustworthy
components to perform sensitive operations.

This process is based on the idea that the actual building
and deploying activities are small pieces of code that can



Functionality Access rights Complexity/Criticality Network connectivity Typical impact of
compromise

Jenkins Does everything as
previously, except for
the components below

Jenkins’ workspace;
but none of the below

Very high / Low Localhost only Limited to workspace

Orchestrator Triggers each step in
sequence

Read on configuration
files

Low / High TLS with deployer Can change order of
steps

Code Retriever Pulls source code
from repository to
local workspace

Read from repo, Write
to own workspace; no
Execute

Low / High TLS with deployer Pull wrong source
code; modify source
code

Unit Tester Runs automated unit
tests on source code

Read from Code
Retriever’s workspace;
Write and Execute on
own workspace.

High / Low None Cannot compromise
integrity (but can halt
pipeline)

Artifact Builder Builds deployable
artefact from source
code

Read from Code
Retriever’s workspace;
write and execute on
own workspace

High / High Accesses third party
software

Injection of malicious
third-party code

Image Builder Build VM image Read from Artifact
builder’s workspace.
Write on own
workspace.

Medium / High Accesses third party
software

Replacement of image
with malicious one

Image Verifier Verifies image creation Read from Image
builder’s workspace.

Very low / Low None Can halt pipeline

Image Archiver Pushes image to stor-
age

Read from Image
builder’s workspace.
Write on Storage.

Very low / High TLS with Storage Replacement of image
with malicious one.
Leakage of credentials
(Storage)

Deployer Deploy image to test-
ing/production

Read from Storage. Low / High TLS with Orchestrator.
Access to production
API.

Replacement of
image with malicious
one. Leakage of
credentials.

TABLE I: Hardening recommendations for components

be encapsulated into trustworthy components and that the
trustworthy components can mediate access to the actual
building and deploying activities. More detail about the formal
portions of this process can be found in [5]. As we will
discuss later, some components are not easily decomposed.
Hence this process will result in a secure pipeline if carried
to completion or a hardened pipeline if completion is not
possible. If all access to sensitive data or function is performed
by a trustworthy component, and the actions of untrustworthy
components with respect to sensitive data or functions are
mediated by a trustworthy component, then the pipeline is
secure. With large systems such as Jenkins or AWS, gaining
trust in components cannot be done by code-level formal
verification because it is too expensive to do. Understanding
the vulnerabilities, however, allows measures to be identified
that will reduce the attack surface of the pipeline and result
in its hardening.

In our case, we used the Serscis Access Modeller (SAM)
[6] to perform design-level formal verification in step 3.b of
our process. The requirements are translated into assertions
and SAM verifies that the current design with designated
trustworthy and untrustworthy components satisfies those re-
quirements.

We began by assuming that all of the components are trust-

worthy. Even in this case, there were potential vulnerabilities.
We explore one of them to show how our process works.

The specification of Jenkins’ activities is by means of a
configuration file. These files are stored in human readable
form. This means that an attacker could edit these files outside
of Jenkins or its support systems. Because our model does
not model the environment in which these files are stored,
our analysis pointed out the possibility of the configuration
files being vulnerable. Consequently, we modified our model
to assume that the configuration files are encrypted and
integrity-protected. To implement this change, we need a small
trustworthy component to be created (not too difficult) and to
modify Jenkins and its support systems to assume that the
configuration file is protected (somewhat more difficult).

Once we have a verified design with the assumption that
the components of the pipeline are trustworthy, we relax that
assumption and make components untrustworthy. This exposes
new vulnerabilities. We illustrate this again with an example.

One of the vulnerabilities comes from the fact that the
components “Artifact Builder” and “Image Builder” are un-
trustworthy. Once the image is constructed, we can verify its
integrity by calculating a checksum, protecting the checksum,
and verifying at the last step in the pipeline that the checksum
is correct for the deployed image. The problem we have not



yet solved is how to trust Artifact Builder and Image Builder.
Our process tells us to decompose these two portions

into untrustworthy and trustworthy portions. There are three
different functions we want to trust: the Artifact Builder and
Image Builder retrieve the correct elements from the correct
locations, and they only retrieve elements from specified
locations. Furthermore, they compose these elements correctly.

The first two of these requirements can be done in a
trustworthy fashion by means of cryptographic protocols and
origin authentication. Note, however, that the correctness of
the elements retrieved is outside of the scope of our pipeline.

What we currently do not know how to accomplish is to
generate trust in the composition of the retrieved elements.
This is the heart of the build process. There are many ways
that one could subvert the actual build including adding non-
specified components to the build. For the moment, we fall
back to satisfying only the first two functions – leading us
to call this “hardening” rather than “securing”. This line of
thinking led us to identify and restrict the input and output
of each of the components and to identify those portions that
could easily be made trustworthy. That is, we re-architected
our pipeline.

VI. RESULT OF RE-ARCHITECTURING

Table I shows the result of our re-architecting. The om-
nipotent component (e.g., Jenkins) has been re-architected to
interact with a number of much smaller components, each with
defined access rights and network connectivity permissions.
The result is a deployment pipeline that is well-understood.
Compromise of certain components can still damage the
system to the point that the integrity of the pipeline is compro-
mised. However, a significant amount of code is executed with
fewer privileges; so that compromise of that portion cannot
lead to compromise of the pipeline’s integrity any more. The
smaller code pieces lend themselves to inspection and (formal)
verification much more readily.

In particular, we can see that several components that were
previously untrustworthy are now either trustworthy or have
very restricted access to resources. In the context of our threat
model, this means an attack can either be stopped, thanks to
verifiability of a smaller code base, or constrained, thanks to
enforcing access rights between components. In future work,
capabilities could provide an interesting way to implement
such constraints for components. The Orchestrator, for exam-
ple, needs very few privileges and needs to communicate only
with one component over the network, the Deployer. It cannot,
however, replace the image that the Deployer is going to read
from Storage. If the Orchestrator is compromised, the attacker
can only halt the pipeline. The components that still allow
compromising the pipeline’s integrity are the Code Retriever,
Artifact Builder, Image Archiver, and Deployer. Components
that have no network connectivity, e.g. the Unit Tester, do not
need to be trustworthy and their impacts on security have been
minimized.

VII. DISCUSSION

We discussed how to harden one portion of the deployment
pipeline – the portion performed by Jenkins in our current
implementation. The portion we discussed, however, is only a
small portion of the actual pipeline we have implemented.

We also only investigated one possible pipeline subversion
scenario. We have identified three different scenarios and there
are likely many others. Consequently, the actual securing of a
deployment pipeline is going to be a complicated affair.

One aid in securing a pipeline is to architect the tools
involved so that the critical functionality of the pipeline – a
small portion – can be made trustworthy and the trustworthy
functionality mediates access to the critical functionality. We
have presented our initial thoughts on how to do this. Our plans
are to continue exploring what it takes to architect and secure
a deployment pipeline and this paper presents a snapshot of
our initial thoughts.

ACKNOWLEDGMENT

NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communications
and the Digital Economy and the Australian Research Council
through the ICT Centre of Excellence program.

REFERENCES

[1] R. J. Ellison, J. B. Goodenough, C. B. Weinstock, and C. Woody,
“Evaluating and Mitigating Software Supply Chain Security Risks,”
CMU/SEI-2010-TN-016, May 2010.

[2] Improving Cybersecurity and Resilience through Acquisition.
https://acc.dau.mil/CommunityBrowser.aspx?id=694372&lang=en-US.

[3] https://wiki.jenkins-ci.org/display/SECURITY/Home
[4] M. Perry, S. Schoen, and H. Steiner, Reproducible Builds,

Talk at 31C3, Hamburg, Germany, December 2014,
http://events.ccc.de/congress/2014/Fahrplan/events/6240.html

[5] P. Rimba, L. Zhu, L. Bass, I. Kuz, and S. Reeves, “Composing Patterns
to Construct Secure Systems,” unpublished.

[6] T. Leonard, M. Hall-May, and M. Surridge, “Modelling access propaga-
tion in dynamic systems,” ACM Transactions on Information and System
Security (TISSEC), vol. 16, no. 2, September 2013.


	Introduction
	Security and Trust
	Threat Model
	Identifying Security Requirements
	Process of Securing the Pipeline
	Result of Re-Architecturing
	Discussion
	References

